【都市農学術報告 第38号，p.9−62，1988】

ツバキ属植物の花色素に関する研究

－とくに系統発生との関連について－

坂田祐介
（観賞園芸研究室）
昭和62年8月7日受理

Studies on the Flower Colours in the Genus Camellia, with Special Reference to the Phylogenies of the Genus

Yusuke Sakata
(Laboratory of Ornamental Horticulture and Floriculture)

第1章 緒 論

第2章 ツバキ属植物のアントシアニン色素分布の確立と色
素分布の概要
第1節 緒 言
第2節 2次元TLCによるアントシアニン色素分布
法の確立
第3節 HPLCによるシニアジン3・グルコン
とガラクトソドの分析
第3章 ツバキ属植物栽培種のアントシアニン色素分
布の様相
第1節 緒 言
第2節 ヤブツバキ、ユキツバキ、サザンカ、カ
ンツバキ、ハルサザンカ、トウツバキ及び
ワシケ栽培種のアントシアニン色素分布の
様相
第3節 種間雑種群のアントシアニン色素分布の様
相と色素の遺伝
第4章 カメリアツバキ野生型のアントシアニン色
素分布の様相と系統発生
第1節 緒 言
第2節 本邦産カメリアツバキ野生型のアント
シアニン色素分布の様相と系統発生
第3節 中国産カメリアツバキ野生型のアント
シアニン色素分布の様相と種分化
第5章 総 括
謝 辞
文 献
Summary

ネパールに端を発し、途中中国南部と揚子江流域の
諸省を含み、朝鮮半島南部をかすめ本邦に至る、常緑
広葉樹を主体とする暖温帯系の植物帯がある。植物に
とって温暖かつ快適な、いわゆる照葉樹林帯がそう
である。ツバキ属植物 (Camellia) のほとんどはこの
樹林帯に分布し、Sealy のモノグラフによると約80
種。近年の報告[8, 88, 89]では200余種を数えることができる。

これらのツバキの中で、本邦産のヤブツバキ (C.
japonica) が現在のところもっとも高緑度で分布し、
最北端をあたる。また本邦は観賞用花木として世界的
に重要なツバキ栽培種群を持ち、これらの作出の母体
となったユキツバキ (C.japonica ssp. rusticana) を
始め、リノツバキ (C. japonica f. macrocarpa),
ホウサンツバキ (C. japonica ssp. hozanensis), サ
ザンカ (C. sasanqua), カンツバキ (C. hiemalis),
ハルサザンカ (C. vulgaris), ワブシケ (C. wabisuke)
などの種と、これらに2、3のパラメリア種やテオプ
シス節のものを加えた、いわばツバキの二次的な起源
センターとして位置する。

現在のツバキ属植物がいつ最初ツバキとして、どの
地域に分布していたのかは不明である。上本[10]は形
態変異に富み、しかも伸長した枝の先端に花芽分化す
る C. lanceolata や C. connata を系統発生上の祖型
ツバキとし、これらは現在の熱帯地域にあたる自生地
から北進を開始、途中気候温帯な中国南部の諸省に定
着したと推論した。これに対し Chang[19]は四川省南
部で続々と古ツバキや紅花ツバキの新種を発見し、中
国における古大陸とされるこの地域をツバキ属植物の
起源地と考えた。しかしながら、植物群の現在の分布
の中心をその起源地とする Chang の考えには問題が残る。塩田(47)は変異の二次的な中心地は群に好適な場所に生じることが多く、この二次的分布の中心でしばしば重要な変化が起こり、多様な種分化をと指摘している。つまり中国南部の諸省をツバキの二次的な起源セクターとするほうがむしろ事実を得ていると思える。

いずれにせよ中国南部の諸省は雲南の銘花ツバキ（C. reticulata）を始めとして、サルウィンツバキ（C. saluenensis），ピターチョウタツバキ（C. pitardii），宛田紅花油（C. polyodonta）および南山茶（C. semiserrata）などの近種のツバキに極めて関連深い紅花のカマリ茶類ツバキを産し、センターを形成している。われわれツバキ愛好家がもっと深い関心を寄せるのは、これらのツバキの中華南部の諸省からの東北進の経路と、これらのツバキの分布の開かれた場所である。津山(108, 113, 114)は変異節分類の重要な形質で、たとえば萼片の宿存性や子房・柱の有毛性を踏まえ、これらに分布域の本邦からの距離に関係し、もっとも離れで分布するツバキに始まるサルウィンツバキ、ピターチョウタツバキ、宛田紅花油、南山茶および浙江紅花油（C. chekiangoleosa）を経て、ヤプツバキに至る主系列を提唱している。またヤプツバキ、ユキツバキ、リソソウツバキおよびユキツバキ（C. japonica var. intermedia）といった本邦産のものを japonica としてひとつにまとめて、ヤプツバキの相性をユキツバキに求めた。

このような形態学、植物生理学または植物地史学的なアプローチとは別に、植物の系統発生や類縁関係を内成成分の共通性をあてがって探ろうとする、いわゆる成分分類学（chemotaxonomy）が導入された。代表的な化学成分はアミノ酸（amino acids），脂質（lipids），アルカロイド（alkaloids），テルペンノイド（terpenoids），フラボノイド（flavonoids）など多岐に及び、植物群を基礎とする詳細な分析の結果、成分的の観点で見た群中の変異素は明らかにされ、従来の系統発生や分類学的扱いの多いも多角的な検討が加えられることになった。(2, 17, 22, 23, 27, 29, 105, 106, 119, 127)

本論文で取り扱うフラボノイド色素類を指標とした系統発生や類縁関係に関する報告は多数にみられる。ところがアントシアノフランボノール属を例にその変異を観察の例として、リカ属(20)，フクシャ属(21)，ヒビスカス属(26)，マメ科(80)，ノボタン科とフジモ科(57)のアントシアノ色素体と、ワタのゴシップチャン(60)およびツツジの5-メチルフラボノール(61)をあげることができる。ツバキでも著者は長崎県平戸市市街地に成立した群を2種のアントシアノ色素体が指標として成立起源に言及した(81)

ツバキ属植物における成分分類学的な研究はフラボノイド類全般(24, 73, 75, 99)，アントシアノ色素(70, 129, 139)および精油成分(28)を分析した例がある。これらに加え最近では、遺伝子あるいは DNA と1対1の関係がより強いためとされるアイソザイムを対象とした研究例も多い(45, 59, 99, 120 - 123)。しかしながら、これらの研究は単一の集団からせいぜい数個体のサンプルに基づいて分析がなされたもので、種レベル以上における分類との関連でなされたもの、あるいは自然雑種集団や系統発生の不明なもので解析との関連はされなかったものが多く、ツバキ属全般や優秀な種内雑種を必ずしもカバーするには至らなかったともいえる。ただこれらの手法を用いると、ツバキの種分化に関し従来の外部形態や核核的な知見を指標とするより、系統、種内あるいは個体レベルでの遺伝的相連や変異の実態を、はるかに強く反映する解析がなされた点で高く評価されよう。

Sealy(88)や近藤(32)はツバキ属は分類学的に互いに関連し、交雑親和性も高く、中間型の形態を持って個体を含め、多変形の変異形を伴って複合体を形成し、連なっているということ。事実、ヤプツバキ＝ユキツバキ(33, 68, 111, 131, 114)、ツバキ＝サルウィンツバキ＝ピターチョウタツバキ(24, 25, 31, 88)およびヤプツバキ＝サルウィンツバキ(71, 72)間の複合体は顕著で、最近では異節間でまたがるヤプツバキ＝ハルサザンカ＝サザンカ間の複合体はたらき立証されるに至った(100, 101, 117)。したがってツバキ全般にわたって内成成分の指標として解析すれば、これら複合体の内部構造の明確なまま、種成立や類縁関係については多大な知見を得ることができるとも期待される。

このような観点から本研究は花弁のアントシアノ色素を指標として、ツバキの系統発生と類縁関係を明かにすることを目標とした。本論文はこのような目的のもとで著者が1979年から1985年にかけて鹿児島大学農学部において行った研究の成果を取りまとめたもので、まず第2章ではツバキ属植物に見られるアントシアノ色素の性状を把握するため、色素分析法の確立に努めた(45, 82, 84)。ついて第3章では代表的なツバキ栽培種群のアントシアノ色素分布の実態を明らかにし、色素構成上に類似性と色素変異の種内変異から、栽培種成立
と色素生成の遺伝的背景に言及した82-84。また第4章ではカーリア類ツバキに於て、色素的に見た系統発生からヤブツバキの成立過程を推察した85。なお第5章はこれらの結果を総括したものである。

第2章 ツバキ属植物のアントシアノ色素分析法の
確立と色素分布の概要

第1節 緒 言

ツバキ属植物の花弁にどのようなアントシアノ色素
が存在するのかを調べたにあたり、まず、試料の採集
時期や調製法の検討を始まり、クロマトグラフ用の溶
媒の選定を経て、構成色素の定性・定量に終わる一連
の分析法を確立する必要がある。ツバキ属植物の場合,
このような試みはわずかの標本数の、さらにはアン
トシアノ色素以外のフラボノイド類について多分にな
されていた43。これは、観賞用花木としてのツバキより、
チャは世界的な飲用工芸作ととして生活に密接にかか
わり合い、はるかに重要な立場にあったからにはかな
らない。したがってツバキに関するアントシアノ色素
の分析例は必ずしも豊富にあったとは言い難い。

ツバキ花弁のアントシアノ色素をクロマトグラフィ
ーを用い分析した例として、とくに Parks ら73と
Yokoi129の成績をあげることができる。氏らには1次
元のペーパークロマトグラフィー（以下 PPC）、また
は薄層クロマトグラフィー（以下 TLC）を採用した
分析の結果、主に3つの色素を見出している。しか
し、両氏らの結果には1次元クロマトグラフィーを用
いたことに起因すると考えられる色素の不純度や、定
性上に誤りが認められ、この方法での色素分析はかん
り困難と思えた。

これに対し、2次元のクロマトグラフィーで分析し
たのは Parks and Kondo73が最初である。ヤブ
バキ、サルウィンツバキおよび両種間の雑種後代を用
い、ヤブバキをサルウィンツバキにそれぞれ特有な
2個の色素を見出した。しかしながら、氏らが分析の
中心にえたのはフラボノール色素で、しかも扱った
種は2種と少なく、ツバキ属全体をカバーするには至
らなかったといえる。

このように、ツバキのアントシアノ色素についての
知見は充分なものとはいえな、本章第2節で論じる
ところは2次元 TLC による分析法の確立について
で86，とくに花弁の採取時期、乾燥花弁の調整法およ
び色素の定性を含めて広範に取り扱うこととした。
ところで PPC や TLC によるフラボノイド色素分
析に替わるものとして、近年高速液体クロマトグラフ
ィー（以下 HPLC）がこの分野に導入された1,3,30,
124,125。本法の利点は極微量の試料で、しかも短時間
内に高精度の定性・定量分析が可能なことである88-90,
16,60,95,177。いままひとつの利点は、通常の PPC や TLC
で極めて困難とされるアントシアノ的一次性列と
フラクトロドの分離が容易であることがある8,15,
125。

HPLC を用いてツバキの色素分析を行ったのは
Miyajima ら69が最初である。フラボノール色素で
あるが、全花柄 Christheanita の花弁から黄色色
の発現にもっとも寄与すると思われるケルセチン-7-グ
ルココンを分離同定した。予備的ではあるが著者もアン
トシアノ色素について本法を用いるかどうかの検討
を行い、有望であるとの感想を既に得ている。

本章第3節で述べるべきは HPLC による分析法
の確立で86，とくに2次元 TLC で分離し得なかった
シアニジン 3-グルココンとフラクトロドの分離定量
をめざした。

第2節 2次元 TLC によるアントシアノ色素分析
法の確立

材 料 と 方 法

実験 1. 2次元 TLC によるアントシアノ色素の検
策

本節で用いた TLC の展開溶媒を Table 1 に示した。
また TLC 用吸着剤はすべて微結晶セルロース（No.
2330, Merck 製）を用いた。

ヤブツバキ栽培種「村娘」、ユキツバキ栽培種「花
かんざし」、サザンカ栽培種「七福神」、トウツバキ栽培
種「キャプテン・ロ」および野生型サルウィンツバ
キの新鮮花弁を1979年1～3月に採集し、それぞれ
1g を1%塩酸・メタノール10mlで15～20時間冷冻
吸収を抽出。これを減圧下35℃で溶媒を留去し、
粗抽出物を得た。ついてこれを蒸留水4～5滴を加え
いったん水溶液とし、石油エーテルと酢酸エチル5ml
でそれぞれ3回洗浄、溶液する夾雑物を除去した。こ
の水溶液を再度減圧下35℃で濃縮し、少量のメタノ
ールを加えたものを TLC に供した。

1次元の TLC を行な2次元 TLC の展開溶媒を検
討し、溶媒にアルコール系として n-BAW (I), iso-
BAW および EFW を、水系として n-BAW (II) およ
び AHW (I) を用いた、ついて2次元の TLC (20×20
cm) を行った。溶媒の組み合わせは1次元と2次元

NII-Electronic Library Service
Table 1. Solvents used for the chromatographies of camellia anthocyanins, anthocyanidins and sugars

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Composition</th>
<th>Proportion (v/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-BAW (I)</td>
<td>n-butanol / acetic acid / water</td>
<td>4/1/5, upper layer</td>
</tr>
<tr>
<td>n-BAW (II)</td>
<td>n-butanol / acetic acid / water</td>
<td>1/2/7</td>
</tr>
<tr>
<td>iso-BAW</td>
<td>iso-butanol / acetic acid / water</td>
<td>8/2/3</td>
</tr>
<tr>
<td>n-BuH</td>
<td>n-butanol / 2N hydrochloric acid</td>
<td>1/1, upper layer</td>
</tr>
<tr>
<td>EFW</td>
<td>ethyl acetate / formic acid / water</td>
<td>8/2/3</td>
</tr>
<tr>
<td>AHW (I)</td>
<td>acetic acid / hydrochloric acid / water</td>
<td>15/3/82</td>
</tr>
<tr>
<td>AHW (II)</td>
<td>acetic acid / hydrochloric acid / water</td>
<td>30/3/10</td>
</tr>
<tr>
<td>FHW</td>
<td>formic acid / hydrochloric acid / water</td>
<td>5/2/3</td>
</tr>
<tr>
<td>HOAc</td>
<td>acetic acid / water</td>
<td>30/70</td>
</tr>
<tr>
<td>EPAPW</td>
<td>ethyl acetate / pyridine / acetic acid / water</td>
<td>5/5/1/2</td>
</tr>
<tr>
<td>n-BPW</td>
<td>n-butanol / pyridine / water</td>
<td>14/3/3</td>
</tr>
</tbody>
</table>

で、n-BAW (II) と n-BAW (I), n-BAW (II) と iso-BAW, n-BAW (II) と EFW, および AHW (I) と n-BAW (I) とした（Table 1）。

2次元クロマトグラム上のアントシアシン色素の性状を把握するため、色素抽出物の部分加水分解を行った。ヤブツバキ「村娘」、サザンカ「七福神」、トウツバキ「キャプテン・ロー」の新鮮花弁から上述の方法で色素抽出物を得、このものを2規格塩酸で沸騰水浴上10分間加水分解し TLC に供した。展開溶媒は1次元と2次元で、n-BAW (II) と n-BAW (I) とした。なお同じ展開溶媒で既知アントシアシン色素の TLC を行い、性状把握の手助けとした。標品アントシアシン色素をそれと調整した材料はつぎのとおりである。

デルフィニン、ペチュニン、マルビン、シアジン、ペオニン：以上スイートピー花弁、デルフィニン3-グルコシド、デルフィニン3,5-ジグルコシド：以上フリージア花弁、シアジン3-グルコシド、シアジン3,5-ジグルコシド：以上バラ花弁、シアジン3-オクタシルグルコシド：以上ブドウ果皮、シアジン3-キシロシルグルコシド：ヒガンバナ花弁、シアジン3-ラムノシルグルコシド：キングギョソウ花弁。

実験2. TLCによる色素の定性

1982年2月にカンツバキ「立寒桜」の花弁を、その2kgを101の1%塩酸メタノールで2日間冷浸し、抽出液81を得た。これを減圧下35℃で約500mlに濃縮し、2倍量の蒸留水を加え、析出する沈殿を漉去した。色素の精製はカラムクロマトグラフィーを採用した。上記抽出液をハイポーラスボリマー250g（HP-20、三菱化成工業製）をつめたカラム（3cm I. D.×90cm）に加える色素を吸着させたのち、まず蒸留水500mlで洗浄した。ついで1%塩酸メタノールを流下し、色素を溶出した。さらに溶媒を減圧下35℃で留去して抽出物を得た。

抽出物内の色素の精製はマス PPC を採用した。東洋漉紙No.50（40×40cm）に抽出物のメタノール溶液を線著し、n-BuH, HOAc, n-BAW (I), AHW (I) の溶媒による展開と、0.1%塩酸メタノールによる漉紙からの溶出を繰り返し、色素を精製した。2次元 TLC で「立寒桜」に6色の色素を検出できるが、本実験ではこれらのうち4色を単離した。

単離色素の定性を1次元 TLC で行った。まず一部を AHW (I), n-BAW (I) および n-BAW (II) で展開し、既知アントシアシン色素とのクロマトグラフに供した。色素標品とそれを調整した材料はつぎのとおりである。

シアジン3-グルコシド、シアジン3,5-ジグルコシド：以上バラ花弁、デルフィニン3-グルコシド、デルフィニン3,5-ジグルコシド：以上デルフィニン花弁、シアジン3-オクタシルグルコシド：以上ブドウ果皮、シアジン3-キシロシルグルコシド：ヒガンバナ花弁、シアジン3-ラムノシルグルコシド：キングギョソウ花弁。

つぎに残余を2規格塩酸2mlで沸騰水浴上60分間加水分解し、アクリコンおよび糖部の定性を行った。まず加水分解液からイオニン基アールコール（2ml×2回）でアクリコンを振り取り、減圧下50℃で溶媒を留去し少量のメタノールで溶かしたものを、FHW, AHW (II) および iso-BAW を用いた TLC による既知アントシアシンとのクロマトグラフに供した。また水層の糖を1規格水酸化ナトリウムで中和し、イオン交換樹脂で脱塩後、減圧下 40℃で溶媒を逐去したものを、EPAPW および n-BPW を用いた TLC による糖標品とクロマトグラフに供した。なお加水
ツバキ属植物の花色素に関する研究

分解時に、処理後10分と20分の2回にわたって少量を取り、部分加水分解産物の検索をn-BAW (I)を用いたTLCで行った。

実験3. 乾燥花弁の調整と着色の発達に伴う色素の変化
ツバキの新鮮花弁は容易に褐変する傾向があり、多数に及ぶ試料の保存に乾燥処理が必要である。本稿は新鮮花弁、凍結真空乾燥花弁、煮沸風乾花弁のアントシアニン色素を検討した。

1978年3月鹿児島市桜島で野生型ヤブツバキ花弁を採取し、一部を-70℃のフリーザーで凍結、凍結真空乾燥機（DF-02型、日本真空技術製）で乾燥した。また一部を沸騰水中で10〜15秒間浸漬し、花弁の褐変に関与する酵素を不活性化後室温で乾燥した。

まず新鮮花弁2g、乾燥花弁100mgを1%塩酸メタノール10mlで8〜10時間冷浸し、色素を抽出した。これを減圧下で35℃で溶媒を留去し、粗抽出物を得た。このものを少量のメタノールで溶解し、2次元のTLCにより検出した。溶媒は1次元にn-BAW (II)、2次元にn-BAW (I)を用いた。

つぎに、得られたクロマトグラムを2波長クロマトスキャナ（CS-900、島津製）に波長:
λ_S=530nm, λ_L=700nm、光束：1.25×1.25mmで、モード：透過程光のスキャニングの諸条件でかけ、各色素スポットの相対的な面積をプラニックメーターで計測した。また乾燥花弁については10mgを0.05%塩酸メタノール10mlで10時間冷浸し、得られた抽出液を定量的に希釈後、2波長光分光度計（UV-200、島津製）で558nmの極大吸収値を測定した。この値を標準品のシアニン3-グルコースの示す検量線（Fig.1）にしたがって換算し、乾燥花弁100mgあたりの色素量（mg）を得た。

着色の発達に伴う色素構成の変化の検討は鹿児島大学内の植栽されている野生型ヤブツバキ花弁を用いた。色素を始めに200個の花弁に印を付し、3日ごとに20個ずつ全て開花日まで採取した。これは萼片を除く筒状の花系部から花弁を剥ぎ取ったが、この際花系部と萼片及び萼片を剥ぎ取って、煮沸風乾法で乾燥した。ついで萼片の乾燥花弁重を測定し、上記の2次元TLCで色素構成、また分光光度計で総色素量を調べた。

結果
実験1. 2次元TLCによるアントシアニン色素の検索
2次元TLCに際し、まずアルコール系と水系の溶媒を選定する必要がある。Fig.2にアルコール系3種と水系2種の溶媒で、ヤブツバキ、ユキツバキ、サザ

Fig. 1. Calibration curve of anthocyanin.

Fig. 2. Thin layer chromatograms of anthocyanins found in some camellias. Numbers in parentheses show the number of spots detected.

NII-Electronic Library Service
コンカ、トウツバキおよびサルウィンツバキのアントシアニン色素を1次元展開した場合のクロマトグラムを示した。前者の溶媒系は n-BAW (I) で、後者のそれは n-BAW (II) で良好なスポットの分離が得られた。

つきに水系とアルコール系の組み合わせの n-BAW (II) と n-BAW (I), AHW (I) と n-BAW (I), n-BAW (II) と iso-BAW, n-BAW (II) と EFW の2次元 TLC を行った結果、図示しなかったがスポットの分離は n-BAW (II) と n-BAW (I) の組み合わせでもっとも良好であった。Fig. 3 はこの組み合わせを用いた場合の各ツバキのアントシアニン色素のクロマトグラムであるが、ヤブツバキに8個、ユキツバキに3個、サザンカに6個、トウツバキに5個およびサルウィンツバキに3個のスポットを検出できた。

各ツバキに見出された色素を一括し、スポットに番号を付した模式的なクロマトグラムを Fig. 4 に、またスポットの大小や濃淡を考慮した各ツバキの色素構成を Table 2 に示した。図表に明らかに、色素1～14の計14個のアントシアニン色素を供試ツバキに認めることができ、これらのうち色素1～9はヤブッ

![Fig. 3. Two-dimensional thin layer chromatograms of anthocyanins found in some garden forms of Camellia.](image)

![Table 2. Constitution of anthocyanins in some garden forms of Camellia](table)

Table 2. Constitution of anthocyanins in some garden forms of Camellia

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Occurrence of anthocyanin-spots*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7-9 10 11 12 13 14</td>
</tr>
<tr>
<td>* Spot-numbers used correspond to those represented in Fig. 4.</td>
<td></td>
</tr>
<tr>
<td>+ : major pigment, + : minor pigment, tr : trace.</td>
<td></td>
</tr>
<tr>
<td>C. japonica cv.'Mura-musume'</td>
<td>++ + + + + tr</td>
</tr>
<tr>
<td>C. japonica cv.'Hana-kanzashi'</td>
<td>++ + + tr</td>
</tr>
<tr>
<td>C. sasanqua cv.'Shichifukujin'</td>
<td>+ + + + + +</td>
</tr>
<tr>
<td>C. reticulata cv.'Captain Rawes'</td>
<td>+ + + + + +</td>
</tr>
<tr>
<td>C. saluenensis wild type</td>
<td>+ + + + + +</td>
</tr>
</tbody>
</table>
ツバキ属植物の花色素に関する研究

バイ、ユキツバキ、サザンカに、色素10〜13はトウツバキ、サルウィンツバキに主に分布するものであった。

色素粗抽出物の部分加水分解産物の模式的な2次元クロマトグラムを Fig. 5 に示した。まずヤブツバキではあらたな間中生成物を見られず、色素1の量もさほど変化しなかったことから、色素5（色素3, 4を含む）からシアニジンへ、もしくは色素5から色素1を経てシアニジンへ至る、2つの分解経路があると考えられる。サザンカではヤブツバキと共通の色素1, 5は同様な経路をたどると考えられるが、色素2, 6は直接デルフィニンへ分解するようであった。これに対し、トウツバキでは主な色素10〜13は間中生成物の色素1, 5を生じ、これらを経てシアニジンへ分解した。したがって、色素10〜13は色素1, 3〜5に比べより複雑な化学構造をもつと考えられる。

以上の部分加水分解時の色素の行動は、色素1, 3〜5はシアニジンの、また色素2, 6はデルフィニンの、いずれもモノサイドであることを示し、色素10〜13は糖を2個以上持つシアニジン配糖体であることを示した。ちなみにFig. 6 に標品のアントシアニン色

Fig. 4. Schematic representation of camellia anthocyanins appearing on a two-dimensional thin layer chromatogram.

Fig. 5. Two-dimensional thin layer chromatograms of anthocyanins found in Camellia japonica, C. sasanqua and C. reticulata before (A) hydrolysis and after (B) controlled acid hydrolysis. The larger the spot, the more the amount of pigment.

素の模式的な2次元クロマトグラムを示すと、n-BAW (II) の水系溶媒で、ダイサイドは対応するモノサイドより高 RF 域を占め、かつ前者はトウツバキやサルウィンツバキの色素10〜13と、また後者はサブツバキやサザンカの色素1〜9と、それぞれはほぼ同じ RF 域を占めたことも、上述の推定を裏付けるものであった。

以上の実験結果を踏まえ、本研究はツバキにみられるアントシアニン色素が構造上単糖型か多糖型かに着目し、よく水系展開溶媒で低 RF 値を示す色素1〜9を低次色素系、逆に高 RF 値を示す色素10〜14を高次色素系と便宜的に呼ぶこととした。

実験2. TLC による色素の定性
ツバキに見られる14個の色素スポットのうちカンツバキには低次色素系の色素1〜6の6個が存在する。

Table 3. Thin layer (cellulose) chromatographic identification of pigment-spots belonging to the lower-Rf anthocyanins appearing on a two-dimensional chromatogram

<table>
<thead>
<tr>
<th>Compounds</th>
<th>n-BAW (I)</th>
<th>iso-BAW</th>
<th>AHW (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camellia anthocyanins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spot 1</td>
<td>23</td>
<td>38</td>
<td>26</td>
</tr>
<tr>
<td>Spot 2</td>
<td>38</td>
<td>59</td>
<td>15</td>
</tr>
<tr>
<td>Spot 5</td>
<td>53</td>
<td>72</td>
<td>29</td>
</tr>
<tr>
<td>Spot 6</td>
<td>17</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Authentic anthocyanins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanidin 3-glucoside</td>
<td>23</td>
<td>39</td>
<td>27</td>
</tr>
<tr>
<td>Cyanidin 3,5-diglucoside</td>
<td>15</td>
<td>23</td>
<td>41</td>
</tr>
<tr>
<td>Cyanidin 3-(p-coumaryl) glycoside</td>
<td>52</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>Delphinidin 3-glucoside</td>
<td>17</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>Delphinidin 3,5-diglucoside</td>
<td>11</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>Delphinidin 3-(p-coumaryl) glycoside</td>
<td>39</td>
<td>58</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 4. Thin layer (cellulose) chromatographic identification of acid hydrolysates of pigment-spots belonging to the lower-Rf anthocyanins

<table>
<thead>
<tr>
<th>Compounds</th>
<th>AHW (II)</th>
<th>FHW</th>
<th>iso-BAW</th>
<th>EPAW</th>
<th>n-BPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthocyanidins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spot 1</td>
<td>54</td>
<td>28</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spot 2</td>
<td>34</td>
<td>19</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spot 5</td>
<td>55</td>
<td>29</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spot 6</td>
<td>35</td>
<td>18</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentic anthocyanidins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelargonidin</td>
<td>71</td>
<td>39</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanidin</td>
<td>55</td>
<td>29</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peonidin</td>
<td>67</td>
<td>36</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphinidin</td>
<td>35</td>
<td>19</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petunidin</td>
<td>50</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malvidin</td>
<td>63</td>
<td>32</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spot 1</td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>15</td>
</tr>
<tr>
<td>Spot 2</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>Spot 5</td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>15</td>
</tr>
<tr>
<td>Spot 6</td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>16</td>
</tr>
<tr>
<td>Authentic sugars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>33</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactose</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabinose</td>
<td>40</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylose</td>
<td>47</td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ツバキ属植物の花色素に関する研究

このうち色素1, 2, 5, 6の4個を単離し, 標品色素とのクロマトグラフ (Table 3), 加水分解後のアソジカリコンと糖の定量 (Table 4), 部分加水分解生成物の精査 (Fig. 7) によってつきのように同定した。

色素1: シアニジン3-グルコンド, 色素2: デルフィニジン3-パラクマリルグルコンド, 色素5: シ

Fig. 7. Thin layer chromatograms of the controlled acid hydrolysates of spots 1, 2, 5 and 6 in parallel with authentic samples of anthocyanins.

Table 5. Effect of preparation of petals for analysis on the constitution of anthocyanins in Camellia japonica

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Total* / mg</th>
<th>Constituent anthocyanins (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 / 3 & 4</td>
</tr>
<tr>
<td>Fresh petal</td>
<td>—</td>
<td>23 ± 3</td>
</tr>
<tr>
<td>Lyophilized petal</td>
<td>0.63 ± 0.04</td>
<td>65 ± 2</td>
</tr>
<tr>
<td>Boiled & dried petal</td>
<td>0.65 ± 0.03</td>
<td>68 ± 4</td>
</tr>
</tbody>
</table>

*1 mg of anthocyanins / 100 mg of petal dry-weight.

*2 Numbers used correspond to the spot-numbers represented in Fig. 4.

*3 Mean ± SD (standard deviation).

Fig. 8. Changes in petal dry-weight during flower-bud-development.
以上の蓄積の蕾のあたり

Fig. 9. Changes in total amount of anthocyanins per bud during flower-bud-developmen.

日前にほぼ最大に達した（Fig. 9）しかし乾燥重100mgあたりの色素量は開花6日前にすでに最大に達し、その後むしろ減少した（Table 6）。つまり色素生成は蕾の発達途中で終結するが、色素以外の乾物生産は比較的遅くまで継続することを示した。

色素構成の変化を見ると（Table 6）、開花3日〜6日前では開花したものと同じ色素構成を示し、各色素蓄積比率も開花前と有意差は認められなかった。しかし開花9日前では色素構成は同じであるが、色素1で比率は低く、色素5で逆に高かった。また色素生成初期の開花12日前では、開花前には見られない1個の未知色素が検出され、しかも比率は約40%も、もっとも主要であった。

以上のようにツバキ花弁の色素生成はかなり小さな

表6. Camellia japonicaにおける花芽のアントシアニンの有無の変化

<table>
<thead>
<tr>
<th>Days before anthesis</th>
<th>Total<sup>1</sup></th>
<th>Constituent anthocyanins (%)<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>anthocyanin</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0.18±0.06<sup>4</sup></td>
<td>20±4</td>
</tr>
<tr>
<td>9</td>
<td>0.76±0.12</td>
<td>81±3</td>
</tr>
<tr>
<td>6</td>
<td>1.10±0.15</td>
<td>86±3</td>
</tr>
<tr>
<td>3</td>
<td>1.06±0.07</td>
<td>87±2</td>
</tr>
<tr>
<td>0</td>
<td>0.91±0.12</td>
<td>86±5</td>
</tr>
</tbody>
</table>

¹ mg of anthocyanins / 100mg of petal dry-weight.

² Numbers used correspond to the spot-numbers represented in Fig. 4.

³ Other pigment spots than 1-6 are spots 7-9, and in addition to these, petal of 12 days before anthesis contains an unknown pigment.

⁴ Mean ± SD (standard deviation).
ツバキ属植物の花色素に関する研究

ツバキの場合1次元にn-BAW (II)，2次元にn-BAW (I) を用いた TLC でよくも良好な色系分析を示したが，14個のアントシアニン色素を検出することが改めにFig. 4。これまでの1次元の PPC，TLC で検出されたのはシアージン 3-グルコシドとアン
ルチン色素が主であるが，これにサザンカやカ
ンツツバキのデフィニン 3-グルコシド129, 130 と，
サルウィンツバキとトウツツバキの未知の2個783を加え
ても，せいぜい5個であった。したがってこれまでの
報告例のほうが3倍の色素数を示すことになる。

ところで，クロマトグラム上の色素をC₆-C₃-C₆
骨格の3位に1個の糖を持つモノサイドグループと，
3位または2，5位に2個以上の糖を持つグループに
区別することができた（Figs. 5, 6）。前者を低次色
素系，後者を高次色素系と呼ぶ。ヤブツツバキ，ユキ
ツツバキ，サザンカには前者が，また後者はトウツバキ，
サルウィンツバキに主に分布といえる（Table 2）。
本邦と中国大陸産のツツバキで大半の色素分布の違いが
あるようであり，あるいはヤブツツバキやユキツツバキは
色素1を，サザンカは色素5を，またサルウィンツバ
キは色素10, 12を，トウツバキは色素11, 13を主体と
するように，種間で色素積率が高いようであるが，
白石・渡部89, 90がプドウで報告しているように，色素
分布の様相で種，系統および品種を区別する手法をツ
バキに適用することも可能と考えられる。第3章では
これらの点に着目し，栽培種群の色素分布を詳細に検
討する91, 92。

色素分析法とあいまって，乾燥花弁の調整や花
弁採取時においても解決しなければならない問題があっ
た。ツバキ新鮮花弁は急速に褐変し，分析に使えない
ようになることは周知のとおりである。実験の結果は凍結
真空乾燥と沸風乾燥花弁の両者とも新鮮花弁と同様色
素構成や色素積率を示した。花弁乾燥には凍結真空乾
燥が望ましいことはいうまでもないが，それよりはる
かに簡素で時間にかからない方法が採用できる，
多数に及ぶ試料保存が可能となった。

これに対し花弁採取時における問題であるが，たとえば
シートピー78, 79, 80, 81, ホウセンカ32, バラ7，キン
ギッシュソウ103, 104などでは，蕾と開花したもので花弁
の色素構成や色素積率が大きく異なる場合がある。つ
まり花弁での色素合成はかなり緩慢に，かつ花弁の発
達に伴って進む，このような変化を生じるものとい
える。したがって，これらではたとえば種，系統およ
び品種間で色素構成を比較するような場合，発達段階
をそろえた花弁を分析に用いることが不可欠となる。

ツバキでは開花6日前の蕾であっても，開花花弁と
まったく同じ色素構成や色素積率を示し（Table 6）
かなり早い発達段階で急速な，しかも最終的な構成や
積率に至る色素合成を行う植物といえる。したがって
相当幅広い時期に及んで花弁を採集しても，蕾と開花
したもので色素分布の様相に違いがあるなどという
不都合をきたさない訳で，分析に有利な材料と考えら
れる。

要 約

ツバキ属植物の花弁のアントシアニン色素分析法の確
立と色素分布の概要について検討した。

1. 1次元にn-BAW (II)，2次元にn-BAW (I) の
展開溶媒を用いた TLC でもっとも優れた色素スポット
の分離がみられ，供試ツバキに色素1から色素14まで
の合計14個のアントシアニン色素を検出した。またこ
れらの星状を精査した結果，モノサイド群の低次色素
系とダイサイド群と推定できる高次色素系とに分類し
たが，種によって両色素系の分布が異なることを予測
できた。

2. 沸風乾燥花弁の色素構成や色素積率比は，新
鮮花弁や凍結真空乾燥花弁のそれとまったく同じで，
試料花弁の調整・保存に沸風後乾燥する方法が可能と
なった。

3. 花弁の保存が伴う色系生成をみると，開花6日前
の花弁は開花したものと同じ色素構成や色素積率を示
し，幅広い時期に及ぶ花弁採集が可能となる。

第3節 HPLC によるシアージン3-グルコシド
とグラクトシドの分析

材料と方法

1982年5月新潟県黒埼山頂部（標高：海抜 900m
～1100m）で採集した野生型ユキツツバキの花弁を，第
2節に示した煮沸風乾燥法で乾燥後, 10g を1%塩酸-
メタノール 100ml で10時間冷浸し，アントシアニン色
素粗抽出物を得た。このものをメスPPPに供し，n-
BAW (I), AHW (I), n-BuH 3の溶媒で色素1（シア
ジン3-グルコシド，Fig. 4）に相当する部分を単
離・精製した。

HPLC は BIP-1（日本分光製）システムを使用し，
少量のメタノールで溶解した色素粗抽出物の一部を供
した。分析条件はつきのとおりである。

カラム管：4.6mm I.D.×250mm。充填剤：Nu-
cleosil 7C₁₈ (Nagel 製)。検出器：UVIDEC 100-
Table 7. High performance liquid chromatographic separations of spot 1 anthocyanins in Camellia japonica ssp. rustica

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Retention times (min) in solvents</th>
<th>Ga:G*3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HClO₄-MeOH</td>
<td>AcAW</td>
</tr>
<tr>
<td>Spot 1 anthocyanins</td>
<td>12.50, 14.13</td>
<td>5.86, 6.76</td>
</tr>
<tr>
<td>Authentic anthocyanins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanidin 3-galactoside</td>
<td>12.50</td>
<td>5.86</td>
</tr>
<tr>
<td>Cyanidin 3-glucoside</td>
<td>14.13</td>
<td>6.76</td>
</tr>
<tr>
<td>Cyanidin 3-arabinoside</td>
<td>18.16</td>
<td>8.15</td>
</tr>
<tr>
<td>Cyanidin 3,5-diglucoside</td>
<td>5.29</td>
<td>—</td>
</tr>
</tbody>
</table>

*1 Chromatograms were run on a BIP-I HPLC system using a 25 cm × 4.6 mm LD column packed with Nucleosil 7C18 and a UVIDEC 100-III detector set at 535 nm. A flow-rate of 1.0 ml/min was maintained employing HClO₄-MeOH as an eluent, and that of 1.2 ml/min was maintained employing AcAW as an eluent.

*2 HClO₄-MeOH: 35% methanol containing 0.1% perchloric acid.
AcAW: acetone/acetic acid/water (7/10/83, v/v/v).

*3 Ga: cyanidin 3-galactoside, G: cyanidin 3-glucoside.

Fig. 10. High performance liquid chromatographic separation of component anthocyanins of spot 1 and authentic anthocyanins employing HClO₄-MeOH as an eluent. For running conditions see Table 7.

IV（日本分光製）、検出波長：535nm。インテグレーター：Chromatocorder 11（System Instruments製）。

溶媒の流速を0.1%過塩素酸-35%メタノール（以下 HClO₄-MeOH）の場合は1.0ml/min とし、アセトン-酢酸-水（7+10+83，以下 AcAW）の場合は1.2ml/min とした。なお色素標品とそれを調整した材料はつぎのとおりである。

シアリジン3-グルコンド，シアリジン3-5-ジグルコンド：以上バラ花卉，シアリジン3-ガラクトンド：ヤッブ果皮，シアリジン3-アラビノンジド：ツツジ花卉。

色素同定に正確を期すため，HPLC に並行し従来の PPC，TLC を行った。精製した色素1に相当する部分の一部を第2節に示した方法で加水分解し，アグリコント部を AHW (II)，FW, n-BAW (I)，iso-BAW の，また糖部を EPAW, n-BPW の溶媒で，TLC による標品のコクロロマグラフに供した，ついて糖部を EPAW を用いた PPC で分離し，標品の糖と同じ RF 部分を切り取り，熱水で抽出したものを3,6-ジニトロフタル酸を用いた薄層法で比色定量した。

結 果

野生型ユッケタキ花卉の色素1と，標品アントシアニン色素の HPLC による保持期間（retention time）を Table 7 に，また HClO₄-MeOH を溶媒とした場合のチャートを Fig. 10 に示した。HPLC を用いると，たとえば図に見られるような明確な色素の分離が得られるが，ユッケタキの色素1に両溶媒でシアリジ
ツバキ属植物の花色素に関する研究

Table 8. Thin layer (cellulose) chromatographic identification of anthocyanin obtained by the acid hydrolysis of spot 1 in Camellia japonica ssp. rusticana

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Rf values (x100) in solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AHW (II)</td>
</tr>
<tr>
<td>Spot 1 anthocyanin</td>
<td>53</td>
</tr>
<tr>
<td>Authentic anthocyanins</td>
<td></td>
</tr>
<tr>
<td>Pelargonidin</td>
<td>69</td>
</tr>
<tr>
<td>Cyanidin</td>
<td>54</td>
</tr>
<tr>
<td>Peonidin</td>
<td>68</td>
</tr>
<tr>
<td>Delphinidin</td>
<td>32</td>
</tr>
<tr>
<td>Petunidin</td>
<td>49</td>
</tr>
<tr>
<td>Malvidin</td>
<td>61</td>
</tr>
</tbody>
</table>

Table 9. Thin layer (cellulose) chromatographic identification of sugars obtained by the acid hydrolysis of spot 1 in Camellia japonica ssp. rusticana

<table>
<thead>
<tr>
<th>Compounds*1</th>
<th>Rf values (x100) in solvents</th>
<th>Ga : C*2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPAW</td>
<td>n-BPW</td>
</tr>
<tr>
<td>Spot 1 sugars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentic sugars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Galactose</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Arabinose</td>
<td>41</td>
<td>17</td>
</tr>
<tr>
<td>Xylose</td>
<td>49</td>
<td>19</td>
</tr>
</tbody>
</table>

*1 Visualization of colour of sugar-spot was affected by aniline-phosphoric acid (Bryson and Mitchell, 1951).
*2 Ga : cyanidin 3-galactoside, G : cyanidin 3-glucoside.

ツバキ属植物では初めてのものである。

PPCやTLCではアントシアニン色素のグルコースとガラクトスの分離は極めて困難とHarborne(39)は指摘しているが、実験アルコール系水系溶媒で両色は近似したRf値を示す。したがって両者の同定に時として問題があったものの無理から実験である。たとえばFragaria vescaのベラルゴレジン3-ガラクトスは後日SondheimerとKarash(39)によってグルコースと、あるいはPrimula sinensisのマルピジン3-ガラクトスもHarborneとSherratt(40)によってグルコースと訂正された。ツバキの場合にTLCで色素1をシアニジン3-グルコースと同定したが(81,82), HPLCでシアニジン3-グルコースとガラクトスの混和物と訂正した(84)。

このようなHPLCの高度な分析能を利用し、多く植物のフラボノイド類の正確な同定・定量を行い、色素構成や蓄積型で品種を同定する試みがアメリカ合衆国のAsenら(88,95,96)のグループで始められた。たとえばボンセチアではフラボノール色素で38品種、またアントシアニン色素で28品種を同定し、かつ市販品の50％が体細胞突然変異に起因する特徴的な色素構成を持つことも明らかにした。つまりHPLCを用いた精密な分析法はこれまでにないデータの解釈とそれにに基づく利用、とともに系統発生の解明、種、系統、品種特異性の把握、あるいは育種への応用などに対しで、極めて有効な手段と考えられる(84)。

要 約

HPLCを用いて野生型ユキツバキ花弁のアントシアニン色素を分析した結果、これまでのTLCでシアニジン3-グルコースとした色素スポットは、実際はシアニジン3-グルコースとガラクトスの混合物であった。ツバキ属植物においてシアニジン3-ガラクトス

考 察

HPLCを用い野生型ユキツバキ花弁にシアニジン3-ガラクトスを見出した(84)。この色素の同定はツバキ属植物では初めてのものである。

PPCやTLCではアントシアニン色素のグルコースとガラクトスの分離は極めて困難とHarborne(39)は指摘しているが、実験アルコール系水系溶媒で両色は近似したRf値を示す。したがって両者の同定に時として問題があったものの無理から実験である。たとえばFragaria vescaのベラルゴレジン3-ガラクトスは後日SondheimerとKarash(39)によってグルコースと、あるいはPrimula sinensisのマルピジン3-ガラクトスもHarborneとSherratt(40)によってグルコースと訂正された。ツバキの場合にTLCで色素1をシアニジン3-グルコースと同定したが(81,82), HPLCでシアニジン3-グルコースとガラクトスの混和物と訂正した(84)。

このようなHPLCの高度な分析能を利用し、多く植物のフラボノイド類の正確な同定・定量を行い、色素構成や蓄積型で品種を同定する試みがアメリカ合衆国のAsenら(88,95,96)のグループで始められた。たとえばボンセチアではフラボノール色素で38品種、またアントシアニン色素で28品種を同定し、かつ市販品の50％が体細胞突然変異に起因する特徴的な色素構成を持つことも明らかにした。つまりHPLCを用いた精密な分析法はこれまでにないデータの解釈とそれにに基づく利用、とともに系統発生の解明、種、系統、品種特異性の把握、あるいは育種への応用などに対しで、極めて有効な手段と考えられる(84)。

要 約

HPLCを用いて野生型ユキツバキ花弁のアントシアニン色素を分析した結果、これまでのTLCでシアニジン3-グルコースとガラクトスとした色素スポットは、実際はシアニジン3-グルコースとガラクトスの混合物であった。ツバキ属植物においてシアニジン3-ガラクトス
第3章 ツバキ属植物栽培種のアントシアニン色素分布の様相

第1節 緒 言

本邦における代表的な花木としてツバキ以外にバラ、ツツジ、ジャスミン、ポタントなどがあげられるが、これらは品種分化に関して2つのグループに大別できるよう、一見は花色について性質を異なる多くの野生原種が広範囲にわたって結びおり、現在の品種群を形成したバラやジャスミンで、いまひとつは花色についていくらくなる程度で野生原種がせせない2、3種交雑に関係したか、あるいは原種が単独に限られていて花色に関する突然変異を起こすのかいずれかで、多彩な品種群を形成したツツジやポタントである。

ツバキはといえば後に属する、観賞用のツバキではヤブツバキ、ユキツバキ、サザンカ、カンツバキ、ハルサザンカ、ワビスケ、トウツバキ、ワリウムシー系ツバキが重要であるが、これらの中様系系統発生上の歴史やサザンカ、ハルサザンカ、ワビスケと、雑種起源のウリウムシー系ツバキを除けば、他は単一野生種日に由来する品種分化を遂げた種といえる。したがって第2章で触れたように、種内の花色変異はサザンカとカンツバキに微量のアントシアニン系色素するために、大部分はアントシアニン色素の発現に起因し、多彩とは言い難い、この点、同様な品種群成立起源のツツジやポタントは、種によって多量のアントシアニン系色素や強力なコピレーション機会を持ち、趣を異なるところである。

さて、ツバキ属植物をアントシアニン色素で類型化した例としてParksらとYokoiがの報告をあげることができ。前者はヤブツバキ、サザンカ、ハルサザンカが共通してシナジニン3-グルコンドを有すること、およびサルウィンツバキまたはトウツバキにそれぞれ特有な色素があることから、ヤブツバキ型、トウツバキ型、シナジニン3-グルコンドの3型を抽出している。これに対し後者は3個の主要色素の分布から、ヤブツバキ型、サザンカ型、種間種（トウツバキを含む）型に分けた。両者で是類型化は異なるものの、少なくともツバキに種間または系統間で色素分布に差がある点を示唆したものであった。

前章では2次元クロマトグラム上に14個、またHPLCを用いた分析で、あらたにシアジニン3-ガラクトソドを加えた計15個のアントシアニン色素ユキツバキ、サザンカ、トウツバキの代表的な品種と、サルウィンツバキに見出しき、これらの分布が種間で異なることを予想することができた。本章第2節で述べると、多種に及ぼす栽培種群の総数15個の色素分布の様相で、アントシアニン色素型の変異形と種内変異を的経り、栽培種立生の変態を明らかにすることを目的とした。また本章第3節では、栽培種立生のものについて色素分布を明らかにしたが、ときに色素の遺伝に関問い合わせる。

第2節 ヤブツバキ、ユキツバキ、サザンカ、カンツバキ、ハルサザンカ、トウツバキ及びワビスケ栽培種のアントシアニン色素分布の様相

材料と方法

実験1. 2次元TLCによる色素分布の様相

本節で用いたツバキ花弁はTable 10とAppendix Iに示したとおり、ヤブツバキ96品種、ユキツバキ21品種、サザンカ39品種、カンツバキ8品種、ハルサザンカ22品種、トウツバキ35品種、ワビスケ9品種である。

ヤブツバキ：九州大学農学部（福岡）、久留米ツバキ愛好会（久留米）、長島熱帯植物園（鹿児島）、ユキツバキ：新潟大学農学部（新潟）、サザンカ：東京農工大学農学部（府中）、農林水産省野菜試験久留米支場（久留米）、カンツバキ：九州大学農学部、ハルサザンカ：九州大学農学部、東京農工大学農学部、トウツバキ：久留米ツバキ愛好会、ワビスケ：横浜市立子ども公園（横浜）。

1978年から1979年にかけて花弁を採集し、第2章第2節に示す煮沸乾燥法で乾燥花弁を得、デシケーター（シリカゲル）に保存し適宜実験に供した。アントシアニン色素の抽出と2次元TLCは前章第2節に示したとおり、1次にn-BAW（II）、2次にn-BAW（I）の溶媒を用いた。

クロマトグラム上の色素スポットの定着はクロマトスキャナ（CS-900、島津製）を、総色素の定量は2波長分光光度計（UV-200、島津製）を用い、前章第2節に示す条件で行った。

実験2. HPLCによるシアジニン3-ガラクトソドの分布の様相

供試花弁はTable 11に示したぐて、あらたにヤブツバキ48品種、サザンカ5品種、ハルサザンカ20品種を加えた。

HPLCによる色素1に占めるシアジニン3-ガラクトソドの分離定量は第2章第3節の方法
ツバキ属植物の花色素に関する研究

に準拠したが、手順を示すと続きのとおりである。まず、乾燥花弁20mgを1％塩酸メタノール4mlで4時間冷浸し、濾過後濾液に16mlの蒸留水を加え、色素をSEP-PAK C18カートリッジ（Waters製）に吸着させた。つぎに蒸留水2mlと20％メタノール4mlでカートリッジを洗浄、非極性および極性の一部を除去し、80％メタノール4mlで色溶出し、この溶液をつぎの条件でHPLCに供した。

ポンプ：TRIROTAR-III（日本分光製）、カラム：4.6mmI.D.×250mm。充填剤：Nucleosil 7C18。検出器：UVDEC100-III（日本分光製）。波長：535nm。展開溶媒：0.1％過塩素酸一35％メタノール、流速：1.0ml/min。インテグレータ：Chromatocorder11。

結 果

実験1．2次元TLCによる色分布の様相
ヤブツバキ、ユキツバキ、サザンカ、カンツバキ、ハルサザンカ、トウツバキおよびハビジュウの合計232品種のアントシアニン色素構成と、構成色素の蓄積比率（百分率）をAppendix1に、またそれを主なものとに取りまとめ平均値としてTable10に示した。

（1）ヤブツバキ群
「村村」と「太神楽」の2品種に例外的に高次色系の色素14を認めたが、他はすべて色素1～9の低次色系のみを含有しており、前者は平均値で総色素の64％、後者は24％を占めた（Table10）。

色素1は「クリスマス・ビューティー」や「南蛮紅」のヘマチミンとされているが、一部は低次色素系の他に含まれるため、他はすべて低次色系を持つものであった。低次色系の構成は色素1、3～5および7～9でヤブツバキと同様であったが、色素1は平均値で総色素の88％を占めることからうかがわせるように、（Table10）、色素1を主体とする点でヤブツバキと異なった。また色素7～9を持つ品種は、ほとんどの割合に達し、ヤブツバキの1割以下に比べかなり高いことも特徴であった。

色素1は「小松姫」や「星姫」の総色素の100％を占めるものから、「覆輪一休」の64％までの変異があった（Appendix1）。色素1と色素5の量に関する品種分布をみると（Fig.12）、ほとんどの品種で色素1のみを主体とする分布を示し、ヤブツバキに見られた両色系の大幅な種内変異は認められず、色素的にさえも品種分化が進まなかった品種群と考えられる。

（2）サザンカ群
すべて低次色系のみを持つことはヤブツバキやユキツバキと同様であったが、色素1、3～5に加え、デルフィニエンス系の色素2、6を持つ点で、前者のツバキと異なった。また「西海」の1品種を除き色素7～9をまったく持たないことも特徴といえる。

低次色系のうち色素5を主体とし、平均値で総色素の60％を占めることからうかがわせるように（Ta-

Table 10. Summarized constitution of anthocyanins in the garden forms of Camellia

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of cvs.</th>
<th>1 & 3</th>
<th>4 & 5</th>
<th>6 & 7</th>
<th>8 & 9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>1/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. japonica</td>
<td>96</td>
<td>64</td>
<td>11</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>C. japonica ssp. rusticana</td>
<td>21</td>
<td>88</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>C. sasanqua</td>
<td>39</td>
<td>17</td>
<td>18</td>
<td>60</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>C. hiemalis</td>
<td>8</td>
<td>14</td>
<td>11</td>
<td>68</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>C. vermis</td>
<td>22</td>
<td>41</td>
<td>12</td>
<td>47</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>C. reticulata</td>
<td>35</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>35</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. saluenensis</td>
<td>1</td>
<td>27</td>
<td>6</td>
<td>20</td>
<td>13</td>
<td>27</td>
<td>2</td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>

*1 Numbers used correspond to the spot-numbers represented in Fig. 4.
*2 Amount of spot 1/amount of spot 5.
*3 A wild form of saluenensis was used.
Fig. 11. Distribution of cultivars in the garden forms of *Camellia japonica* based on the amount of constituent pigments, spot 1 and spot 5. One dot represents one cultivar examined.

Fig. 12. Distribution of cultivars in the garden forms of *Camellia japonica* ssp. *rusticana* based on the amount of constituent pigments, spot 1 and spot 5. One dot represents one cultivar examined.

Fig. 13. Distribution of cultivars in the garden forms of *Camellia sasanqua* based on the amount of constituent pigments, spot 1 and spot 5. One dot represents one cultivar examined.

種内変異は比較的小さい品種群といえる。

(4) カンツバキ群

低次色素系の色素1、3～5に加えデルフィニジン系の色素2、6を持ち、色素5を主体とする点でサザンカと共に1つにした。色素5は平均値で総色素の68％を占めたが（Table 10）、『獅子頭』の87％を占めるものから、「立寒椿」の38％までの変異があった（Appendix 1）。

色素1と色素5の量に関する品種分布を見ると（Fig. 14）、1品種を除き色素5を主体とする、いわゆるサザンカ型の分布を示し、種内変異は小さい品種群といえる。系統発生上の来歴が不明な品種群であるが、色素的にはサザンカと対比しつつに成立したものといえよう。

(5) ハルサザンカ群

低次色素系の色素1、3～5を持つものであったが、「扇光」と「幽玄」は色素7～9を、また「内野紅」、「凱旋」、「望郷」および「星飛竜」はデルフィニジン系を併せ持っていた。これらのうち色素1と色素5を主体とし、前者は平均値で総色素の41％、後者は47％を占めた（Table 10）。

色素1は「唐衣」の総色素の64％を占めるものから、 「内野紅」の31％まで、また色素5は「内野紅」、「旭」、「紅玲」の64％を占めるものから、「鎌倉絞」
ツバキ属植物の花色素に関する研究

Fig. 14. Distribution of cultivars in the garden forms of *Camellia vernalis* (●) and *C. hiemalis* (＊) based on the amount of constituent pigments, spot 1 and spot 5. One dot represents one cultivar examined.

の20％までの、いずれも大幅な変異があった（Appendix 1）。色素1と色素5の量に関する品種分布を見ると（Fig. 14）、色素1を主体とするヤブツバキ型の品種から、色素5を主体とするサザンカ型に至る連続的な分布を示し、色素的にはヤブツバキとサザンカの中間型の品種群といえる。

（6）トウツバキ群

すべて高次色素系の色素10〜13を持ち、これに約8割の品種で低次色素系が混在し、本邦産のヤブツバキ、ユキツバキ、サザンカなどに大幅に異なった。高次色素系では「ライラ・ナフ」、「サマンサ」、「ショット・シルク」は色素10、12を主体としたが、他はすべて色素11、13を主体とし、色素11の平均値で総色素の31％、色素13は47％を占めた（Table 10）。

上記3品種を除くと、色素11は「クリサンセマム・ペタル」の総色素の86％を占めるものから、「アーリーベオニー」の9％までの、また色素13は「モウタンチョ」の88％を占めるものから、「クリサンセマム・ペタル」の3％までの大幅な変異があり、両色素を合計すると100％から56％までの変異であった（Appendix 1）。

色素1〜9、色素10、12および色素11、13の量に関する品種分布を見ると（Fig. 15）、2〜3の例外を除き色素11、12をほぼ主体とする分布を示し、3者の量に関する種内変異は小さい品種群といえる。

（7）ワビスケ群

供試した9品種の色素構成はまちまちで、かなりの品種間差が見られた。Fig. 16 に示す色素1〜

Fig. 15. Distribution of cultivars in the garden forms of *Camellia reticulata* based on the amount of constituent pigments. Each corner of a triangle comprises 100% of the pigment-groups specific to *japonica* (spots 1—9), *saluenensis* (spots 10, 12) and *reticulata* (spots 11, 13). One dot represents one cultivar examined.

<table>
<thead>
<tr>
<th>Table 11. Summarized constitution of spot 1 anthocyanins in the garden forms of Camellia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
</tr>
<tr>
<td>C. japonica</td>
</tr>
<tr>
<td>C. japonica ssp. rusticana</td>
</tr>
<tr>
<td>C. sasangua</td>
</tr>
<tr>
<td>C. vernalis</td>
</tr>
<tr>
<td>C. reticulata</td>
</tr>
</tbody>
</table>

Spot 1 corresponds to that represented in Fig. 4.

Ga : cyanidin 3-galactoside, G : cyanidin 3-glucoside.

NII-Electronic Library Service
Fig. 16. Distribution of cultivars in the garden forms of *Camellia wabisuke* based on the amount of constituent pigments. Each corner of a triangle comprises 100% of the pigment-groups specific to *japonica* (spots 1-9), *saluenensis* (spots 10, 12) and *reticulata* (spots 11, 13). One dot represents one cultivar examined.

9, 色素10, 12および色素11, 13の量に関する品種分布を見ると、低次と高次色素系のいずれを主体とするかで、前者を主体とする「胡蝶亀助」、「紅亀助」、「ヒナ亀助」、「西王母」、「寒咲赤亀助」の群と、後者を主体とする「数寄屋」、「昭和亀助」、「太郎冠者」、「志なし亀助」の群とに大別できる。

前者は低次色素系のみか（「胡蝶亀助」、「紅亀助」）あるいはこれに高次色素系が混在するか（「ヒナ亀助」、「西王母」、「寒咲赤亀助」）で2群に、後者は低次色素系10, 12型か（「数寄屋」、「昭和亀助」、「太郎冠者」）あるいはこれに色素11, 13が混在するか（「志なし亀助」）で2群に分けられる（Appendix 1）。

ワピスケは系統発生上の来歴がまったくといいは不明な品種群である。以上の結果は色素的には1）純粋なヤブツバキ起源のもの、2）色素10・12型の種に由来するものおよび3）色素11・13型の種に由来したものなどの、品種の集合体であることを示すものであった。

実験2．HPLCによるシアニジン3-ガラクトシドの分布の様相
（1）ヤブツバキ群
シアニジン3-ガラクトシドは平均値で色素1の19％のグルコースを含む（Table 11）、グルコース
ツバキ属植物の花色素に関する研究

Fig. 19. Distribution of cultivars in the garden forms of *Camellia japonica* ssp. *rusticana* based on the amount of constituent pigments, cyanidin 3-glucoside and cyanidin 3-galactoside within spot 1. One dot represents one cultivar examined.
Cy3G: cyanidin 3-glucoside, Cy3Ga: cyanidin 3-galactoside.

Fig. 20. Distribution of cultivars in the garden forms of *Camellia japonica* ssp. *rusticana* based on the amount of constituent pigments, spot 1 and cyanidin 3-galactoside. One dot represents one cultivar examined.
Cy3Ga: cyanidin 3-galactoside.

Fig. 21. Distribution of cultivars in the garden forms of *Camellia sasanqua* based on the amount of constituent pigments, cyanidin 3-glucoside and cyanidin 3-galactoside within spot 1. One dot represents one cultivar examined.
Cy3G: cyanidin 3-glucoside, Cy3Ga: cyanidin 3-galactoside.
Fig. 22. Distribution of cultivars in the garden forms of *Camellia sasanqua* based on the amount of constituent pigments, spot 1 and cyanidin 3-galactoside. One dot represents one cultivar examined.
Cy3Ga: cyanidin 3-galactoside.

Fig. 23. Distribution of cultivars in the garden forms of *Camellia vernalis* based on the amount of constituent pigments, cyanidin 3-glucoside and cyanidin 3-galactoside within spot 1. One dot represents one cultivar examined.
Cy3G: cyanidin 3-glucoside,
Cy3Ga: cyanidin 3-galactoside.

この点でもヤブツバキと異なった。

（3）ササンカ群
シアニジン3-ガラクトシドは平均値で色素1の3%、グルコシドは97％を占めた（Table 11）。ササンカの色素1の量はそもそも少ないが、色素1内では圧倒的にグルコシドを生成するといえる。
シアニジン3-ガラクトシドとグルコシド量に関する品種分布をみると（Fig. 21）、まったくのグルコシドを主体とする分布を示し、総色素に占める色素1の量と、色素1に占めるガラクトシド量に関する品種分布は（Fig. 22）、ヤブツバキに見られたように、色素1の量の多少にかかわらずガラクトシド量はまちまちであった。

（4）ハルササンカ群
シアニジン3-ガラクトシンは平均値で色素1の17％、グルコシドは83％を占め（Table 11）、ヤブツバキに類似した。これを総色素に占める収穫比率に換算すると、前者は7％、後者は32％で、ちょうどヤブツバキとササンカの中間の値を示した。色素1に占めるシアニジン3-ガラクトシンは「鶴巻」「竜光」「梅香」の0％もしくは±のものから、「大和錦」の35％までの変異を示した（Appendix 1）。
シアニジン3-ガラクトシンとグルコシド量に関する品種分布を見ると（Fig. 23）、ヤブツバキとササンカの中間の分布を示した。また総色素に占める色素1
の量と，色素1に占めるガラクトシド量に関する品種分布は（Fig. 24），色素1の量の多少にかかわらず，ガラクトシド量はまちまちのヤブツバキ型を示した。

考 察

前章で扱った野生型のサルウィンツバキを含めて，代表的なツバキ栽培品のアントシアニン色素分布の様相を概観して示すとTable 12のとよくである。

まず，2次元クロマトグラム上の色素を低次と高次色素系に分けた場合，前者を主体としたのはヤブツバキ，ユキツバキ，サザンカ，カンツバキ，ハルサランカの本部で成立したとされる品種群で，後者を主体としたのはトウツバキ，サルウィンツバキの中國大陸産のものである。これに対しハッピケの色素分布は複雑で，本邦で成立したとされるツバキでありながら多量の低次色素系を持つ品種を認めることができた。

このような本邦と中國大陸とでの色素分布の違いは，たとえば高次色素系を持つトウツバキ（色素11 • 13型）とサルウィンツバキ（色素10 • 12型）間にも，また低次色素系を持つ本邦産ツバキ間にも認められた。ちなみに色素構成と蓄積の特徴を示すときのとおりである。

ユキツバキ：色素1 > 色素5，グルコシド > ガラクトシド，ヤブツバキ：色素1 > 色素5，グルコシド > ガラクトシド，ハルサランカ：色素1 = 色素5，グルコシド > ガラクトシド，サザンカ・カンツバキ：色素1 < 色素5，グルコシド = ガラクトシド，トウツバキ：色素11 • 13型，サルウィンツバキ：色素10 • 12型，ワビスケ：高次 < 低次色素系。

Parksらはヤブツバキ，サザンカおよびハルサランカを通じてシアジン-3-グルコースを見出し，これらをヤブツバキ型の色素系とし，これにトウツバキ型とサルウィンツバキ型を加えた。しかし実験で前者のツバキ群はそれぞれ異なる色素系を持つことを明らかにしたことで，Parksらの色素系にあたるサザンカ型，ハルサランカ型およびユキツバキ型を付け加えることができる。つまり花の色素分布に関して1）高次色低次色素系，2）高次系では色素10 • 12型か11 • 13型か，3）低次系では色素1型か5型か，4）多量のシアジン-3-ガラクトシドを持つ5）デルフィニン系色素を持つなどを指標にすれば，ツバキ栽培品をほぼ類型化できる。

ところで，色素蓄積を見るとさまざまな種内変異を示した。いまヤブツバキを色素１ > 色素5型，ハルサランカを色素1 = 色素5型と概括したが，これはあくまで品種群の平均値で，実際はヤブツバキに多くの色素1 = 色素5型の品種があり，ハルサランカに至っては色素1 > 色素5型や，色素1 < 色素5型の品種があるなど，変異に富むものであった。

図芸的に重要な花形について，野生型ヤブツバキがほとんど一重で，花色も紅色であるのにに対し，ユキツバキは変異に富むという，津山111と石沢・茂屋49はヤブツバキ栽培種の花重花色変異にユキツバキの変異が関与したとし，栽培品の成立起源をヤブツバキとユキツバキの雑種，ユキパターンクサに求めた。同様に長戸60はエステラーゼに関する変異の研究で，ヤブ
ツバキ栽培種はヤブツバキ野生型よりむしろユキツバキ栽培種に近いとし、ヤブツバキ栽培種の成立にユキツバキが関与したことを示唆した。しかしながら色素1と5の量に関してユキツバキは変異に乏しく、色素1蓄積型ばかりであり、ヤブツバキの豊富な変異がユキツバキのみからもたらされたと考え難しい。

このことに関し Wendel and Parks と Cad-dell は、ヤブツバキは自然の個体群内で遺伝的にヘテロ接合性や多形性が高いと指摘しているが、あるいは、ヤブツバキ自身のこのような遺伝的背景に起因する色素蓄積の変異性の高さともいえまい——こう考えるほうが事実を支持しているように思える。

ハルサザンカの場合、この品種群は系統発生上の来歴が不明なものとされてきたが、近年、ヤブツバキとサザンカの雌株起源であると立証されるに至った 100, 101, 102。このものはヤブツバキとサザンカの1次雛種にサザンカが変化に主導した5倍体群や、ヤブツバキが変化に主導した3倍体群を包含するという、また形態的には5倍体2次雛種はサザンカに、4倍体3次雛種はヤブツバキに近いという。したがって、ハルサザンカを基本にヤブツバキとサザンカの中间型とする、一定の則を踏まえれば不都合と思われる。この点色素的にはヤブツバキ型の品種からサザンカ型のそれに至るまでを包含しており 35, 上記の立証を裏付けることになる。

ユキツバキの場合、この品種群は色素1以上色素5型で両色素量の変異は極めて乏しかった。しかしながら実際は色素1に占めるシアニジン3-ガラクトシンとグルコシンに関して、ヤブツバキやハルサザンカに見られた幅広い構造差を持つものであった 20。このこととはトウツバキや同様で、色素11、13の量に関して両者の合計量には変異は見られないが、個別の量は幅広い構造差を示した 20。

このような色素構成や蓄積の種内変異を指標とし、花色に関する品種分化を考えると、まずヤブツバキやトウツバキの総色素量に占める構成色素（色素1～14）の変異に基づく分化をあげることができる。これに対し、ユキツバキは色素1に占めるガラクトシン量の変異に基づく分化にやや異質である。いっぱいサザンカのように、倍数性の異なる品種群を包括した結果としての分化を遂げたものや、サザンカとヤブツバキのように、構成色素量の変異に乏しく、花色に関する品種分化があまり進まなかったもの——このような分化化できよう。

第3節 種間雑種群のアントシアン色素分布の様相と色素の遺伝

要 約

2次元の TLC と HPLC を用い代表的なツバキ栽培種の花弁のアントシアン色素を精査、色素分布を検討した。

1. ヤブツバキ、ユキツバキ、サザンカ、カンツバキ、ハルサザンカは低次色素系を主体とし、トウツバキは高次色素系を主体とした。またワビスケは高次と低次色素系の混在する品種群であった。

2. 低次色素系ではヤブツバキとユキツバキは色素1を主体とし、サザンカとカンツバキは色素5を主体とした。ハルサザンカは色素1と色素5を等量とするヤブツバキとサザンカの中間型であった。また高次色素系ではトウツバキは色素11、13を主体とした。

3. ユキツバキは色素1に占めるシアニジン3-ガラクトシンが多かった。ヤブツバキとサザンカは少なかった。これに対し、サザンカとカンツバキはシアニジン3-ガラクトシンをほとんど含まなかった。

4. 構成色素の蓄積の変異はヤブツバキとハルサザンカは色素1と色素5で、トウツバキは色素11と色素13で、またユキツバキはシアニジン3-ガラクトシンとグルコシンで見られた。これに対し、サザンカとカンツバキには変異はさほど見られなかった。

5. 以上の色素分布の様相から色素1、色素5、色素10・12、色素11・13、シアニジン3-ガラクトシンおよびアルフィン系色素を指標にすれば、ツバキ栽培種を類型化でき、かつ品種分化の実態を把握できることを明らかにした。

第3節 種間雑種群のアントシアン色素分布の様相と色素の遺伝

材料と方法

本節で用いたツバキ花弁は Table 13 と Appendix 2 に示したとどくで、サルウィンツバキ×ヤブツバキ21品種、トウツバキ×ヤブツバキ12品種、ヤブツバキ×トウツバキ7品種、サザンカ×トウツバキ8品種およびサルウィンツバキ×トウツバキ8品種であった。花弁の主な入手元はつぎのとおりである。

久留米ツバキ愛好会（久留米）、長崎熱帯植物園（鹿児島）、九州大学農学部（福岡）。

1978年から1982年にかけて花弁を採集し、第2章第2節に示す煮沸乾燥法で乾燥花弁を得、デシケーター（シリカゲル）内に保存し適宜実験に供した。

アントシアン色素の抽出と2次元 TLC も前章第2
表13 カメリウスの花色に関する研究

<table>
<thead>
<tr>
<th>Hybrids</th>
<th>Number of cvs.</th>
<th>Constituent anthocyanins (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. saluenensis × japonica</td>
<td>21</td>
<td>1 3 & 4 5 2 & 6 7 & 9 10 11 12 13 14</td>
</tr>
<tr>
<td>C. reticulata × japonica</td>
<td>12</td>
<td>2 4 5 7 24 12 36</td>
</tr>
<tr>
<td>C. japonica × reticulata</td>
<td>7</td>
<td>29 3 5 6 20 23 14</td>
</tr>
<tr>
<td>C. sasanqua × reticulata</td>
<td>8</td>
<td>14 1 1 13 18 15 38</td>
</tr>
</tbody>
</table>

* Numbers used correspond to the spot-numbers represented in Fig. 4.

結果

種間雑種ツバキの合計56品種のアントシアニン色素構成と構成色素の番号比率（百分率）をAppendix 2に、またこれらを種群ごとにまとめて、平均値としてTable 13に示した。

（1）サルウィンツバキ×ヤプツバキ群
低次色素系をほとんど持たない2品種の例外もあったが、おおむね低次色素系の色素1、3～5と高次色素系の色素10、12を持つものであった。低次色素系では色素1と色素5を主体とし、前者は平均値で緑色素の19%、後者は12%を占めた。また高次色素系では色素10と色素12を主体とし、前者は平均値で緑色素の22%、後者は45%を占め、サルウィンツバキ型の色素10、12(Table 10)の量は67%と、低次色素系を上回った(Table 13)。

色素1～9、色素10、12および色素11、13の量に関する品種分布を見ると(Fig. 25)、まったくの色素10・12型のものから、これらを含む等量の低次色素系を混在するものまでの、連続的な分布を示したが、分布は色素11、12を主体とする方向へ傾いた。つまりサルウィンツバキ型の色素10、12の生成はサルウィンツバキ型の低次色素系の生成に対し、遺伝的に優性と考えられる。

（2）トウツバキ×ヤプツバキ群
低次色素系を持たぬ品種もあったが、おおむね低次色素系をほとんど持たない2品種の例外もあったが、おおむね低次色素系では色素1と色素5を主体とし、前者は平均値で緑色素の19%、後者は12%を占めた。また高次色素系では色素10と色素12を主体とし、前者は平均値で緑色素の22%、後者は45%を占め、サルウィンツバキ型の色素10、12(Table 10)の量は67%と、低次色素系を上回った(Table 13)。

Fig. 25. Distribution of cultivars derived from the cross between Camellia saluenensis and C. japonica based on the amount of constituent pigments. Each corner of a triangle comprises 100% of the pigment-groups specific to japonica (spots 1-9), saluenensis (spots 10, 12) and reticulata (spots 11, 13). One dot represents one cultivar examined.

Fig. 26. Distribution of cultivars derived from the cross between Camellia reticulata and C. japonica based on the amount of constituent pigments. Each corner of a triangle comprises 100% of the pigment-groups specific to japonica (spots 1-9), saluenensis (spots 10, 12) and reticulata (spots 11, 13). One dot represents one cultivar examined.
色素系の色素1, 3～5と高次色素系の色素10～13を持たしたものであった。低次色素系では色素1と色素5を主体とし、前者は平均値で総色素の12％、後者は5％を占めた。また高次色素系では色素10, 12で総色素の19％、色素11, 13で60％を占め、トウバキ型の色素11, 13（Table 10）の生成が低次色素系を上まわった（Table 13）。

色素1～9、色素10, 12および色素11, 13の量に関する品種分布を見ると（Fig. 26）、3品種で例外的に低次色素系と色素10, 12を混ぜて持つ分布を示したが、他はすべて色素11, 13を主体とする分布を示した。つまりトウバキ型の色素11, 13の生成はヤブバキ型の低次色素系の生成に対し、遺伝的に優性と考えられる。

（3）ヤブバキ×トウバキ群

上述の雑種と正逆交雑の関係にあるが、色素分布の様相は品種間でまちまちであった。まずFig. 27に示す色素1～9、色素10, 12および色素11, 13の量に関する品種分布を見ると、低次色素系のみのもの、色素10, 12と低次色素系の混在するもの、3色素群が伯仲するものおよび色素11, 13を主体とするもののなどの分布を示した。平均的に見ても（Table 13）、低次色素系は総色素の34％、色素10, 12は29％、また色素11, 13は34％を占めるように、3色素群を伯仲して持つものであった。つまり正逆交雑のトウバキ×ヤブバキ

Fig. 27. Distribution of cultivars derived from the cross between Camellia japonica and C. reticulata based on the amount of constituent pigments. Each corner of a triangle comprises 100% of the pigment-groups specific to japonica (spots 1−9), saluenensis (spots 10, 12) and reticulata (spots 11, 13). One dot represents one cultivar examined.

Fig. 28. Distribution of cultivars derived from the cross between Camellia sasanqua and C. reticulata based on the amount of constituent pigments. Each corner of a triangle comprises 100% of the pigment-groups specific to japonica (spots 1−9), saluenensis (spots 10, 12) and reticulata (spots 11, 13). One dot represents one cultivar examined.

Fig. 29. Distribution of cultivars derived from the cross between Camellia saluenensis and C. reticulata based on the amount of constituent pigments. Each corner of a triangle comprises 100% of the pigment-groups specific to japonica (spots 1−9), saluenensis (spots 10, 12) and reticulata (spots 11, 13). One dot represents one cultivar examined.

（4）サザンカ×トウバキ群

低次色素系をほとんど持たぬ品種もあったが、ほぼ低次色素系の色素1, 3～5と高次色素系の色素10～
ツバキ属植物の花色素に関する研究

13を持つものであった。低次色素系では色素1を主体とし、平均値で緑色素の14%を占めた。また高次色素系では色素10と12で緑色素の28%、色素11と13で56%と、トウツバキ型の色素11、13が主体を占めた（Table 13）。

色素1～9、色素10、12および色素11、13の量に関する品種分布を見ると（Fig. 28）、1品種の例外はあるが、色素11、13を主体とする分布を示した。つまりトウツバキ型の色素11、13の生成はサザンカ型の低次色素系の生成に対し、遺伝的に優性と考えられる。

（5）サルウィンツバキ×トウツバキ群

高次色素系を主体とするもので、その遺伝子交雑により生成するが、焦場低次色素系の色素1、13をとるが、低次色素系では色素1と色素5を主体とし、前者は平均値で緑色素の8%、後者は6%を占めた。また高次色素系では色素10、12が69%、色素11、13が16%と、サルウィンツバキ型の色素10、12が主体を占めた（Table 13）。

色素1～9、色素10、12および色素11、13の量に関する品種分布を見ると（Fig. 29）、2品種の例外があるが、色素10、12を主体とする分布を示した。つまり同じ高次色素系では、サルウィンツバキ型の色素10、12の生成はトウツバキ型の色素11、13の生成に対し、遺伝的に優性と考えられる。

考察

サルウィンツバキ型の色素合成はトウツバキ型やヤブツバキ型の生成に対し、またトウツバキ型の色素合成はヤブツバキやサザンカ型の生成に対して、それぞれ遺伝的に優性と考えられた。一般にアントシアニン色素のヒドロキシル化、メチル化、グリコシル化およびアシル化過程では、より高次な色素を生成する遺伝子は低次的な対し優性とされるが、ツバキの場合も同様であった。

ツバキの低次と高次色素系はそれぞれシアニジンのモノサイド群と、推定であるがダイサイド群に相当し、両者はグリコシル化にかかわる別のリシンを示し、したがって、たとえばシクラメンのM遺伝子はマリブジン3-グロコンノのサザンカ型のSolanum chakoenseやS. stoloniferumのG1遺伝子はケルセチン3-グロコンソのサザンカ型で新しい働きがあるが、そのような遺伝子の存在をツバキに考えることができる。

これに対し、サルウィンツバキ型とトウツバキ型はシアニジンの3,5-ダイモノサイド群（3,5-di-monosides）と3-モノダイサイド群（3-mono-disides）の違いと推定できた（Figs. 5, 6）。したがって、遺伝子が高いと遺伝子が得ているとするなら、たとえばストレプトカーバスのX、Z遺伝子は3-グルコンドを5,5-ジグルコンコドに、またはP遺伝子は3-ダイモノサイドに変わり、遺伝的に上位なX、Zはモノサイドに優先してダイモノサイドを生成するか、このような遺伝的背景はツバキに想定すればよい。

ツバキの色素のうち類型化に重要な色素1（ヤプツバキ型）、色素5（サザンカ型）、色素10、12（サルウィンツバキ型）および色素11、13（トウツバキ型）がある。グリコシル化からアシル化にかかわる変化を示すこれらの色素構造の遺伝子に関して、栽培種群を概括するとFig. 30のようである。種群の図形に注目すると、サルウィンツバキ×ヤブツバキ、トウツバキ

Fig. 30. Schematic representation of pigment-accumulations in the garden forms of camellias and those of hybrid origin. Each corner of a square comprises 50% of spot 1 (left), spot 5 (top), spots 10, 12 (right) and spots 11, 13 (bottom), respectively.
×ヤブツバキ。サザンカ×トウツバキおよびサルウィンツバキ×トウツバキでそれぞれ数種の色素型が強く現れるのは前述のとおりであるが、なぜヤブツバキ×トウツバキであらにサザンカ型が拡大し、サザンカ×トウツバキでサザンカ型が消滅したのかの疑問が残る。

Parksらはヤブツバキに特徴的に出現するフラボノイド類のカーミンは、サルウィンツバキ×ヤブツバキで強く発現するが、ヤブツバキ×トウツバキでは強く発現するから、まったく発現しないものまで、変異があることの理由を、両親種の配合性の違いに求めた。また永田・酒井はサザンカに特徴的に出現する精油成分のユーテノールが、サザンカを親にしても、F1に確実に発現し、カーミンはヤブツバキでありてもF1に必ずしも発現しない理由を、児の分子量の差に求めた。つまり高分子量化合物のカーミンの生成は複雑で、関与する酵素数が多いため、生成合成路すべてがF1に遺伝しないという。

以上の事例はアントシアニン色素にも妥当しよう。ツバキでは変異に際して両親種の倍数性が異なる場合も多い。またアントシアニン色素の分子量が500以上の、天然化合物中でも大きさが類似する、あるいは前節で述べた遺伝的ヘテロ接合性の高さ15, 122, 123などが、色鮮の挙げにひそむを産生させるに至ったともいえよう。

いまひとつの疑問は、おおきたの色素遺伝の法則にとらえるのを知らない種類が存在する。ヤブツバキ×トウツバキの「ダイモンド・ハット」は形態的にヤブツバキに酷似し、それでも共生するかのように、色彩的にもヤブツバキに一致することから、少なくとも、常識にいわれているような1種未縁とは思えない。またサザンカ×トウツバキの「フレーズ・ハリス」は、将来の不詳の種類で、この組み合わせの種類が、前記のサザンカ型が無いことなど131。美しくなるし、サザンカとヤブツバキが関与したものと思える。以上、の2例をみられるような品種成立上の問題も考えられている。交雑組み合わせ次第ではグリーン系の特殊な潜在因子があることを暗示するものであった。

要約

2次元のTLCを用いた種間雑種起源のツバキ栽培種の花弁のアントシアニン色素を精査し、色素分布の様相から色素の遺伝を検討した。

1. サルウィンツバキ×ヤブツバキ群では色素10、12、トウツバキ×ヤブツバキ群では色素11、13、サザンカ×トウツバキ群では色素11、13、またサルウィンツバキ×トウツバキ群では色素10、12をそれぞれ主体したが、ヤブツバキ×トウツバキ群では低次色系、色素10、12および色素11、13の量はまちまちであった。

2. 以上の色素分布の様相から、色素生成はサルウィンツバキ×トウツバキ群×ヤブツバキ（サザンカ）型の順に遺伝的に優性と考えられる。

第4章 カメリア節ツバキ野生型のアントシアニン色素分布の様相と系統発生

第1節 緒 言

ネパールに端を発し、ヒマラヤの温暖地帯と雲南、四川および揚子江流域の諸区を含み、朝鮮半島南部をかすめて本邦の九州、四国および本州の大部分を覆う二つの植物群があり、いわゆる照葉樹林帯がそれで、ツバキ属植物の大部分はこの植物群に分布し、Sealyの古典的なモノグラフによると約80の原種が記載されている。しかし近年、Changは中国南部の諸区から新種を発見し、今やその数は200種余りにのぼる勢いである。

これらのツバキのなかで、世界中の愛好家が観賞用のためのもっとも注目しているのにカメリア節ツバキがある。中国大陸産のツバキ、本邦産のヤブツバキやユキツバキがその一例である。これらは分種学的に互いに関連し、交雑親和性も高く、中間形の持つ個体を含めて変異の出る分野が非常に多い。これにに対して、中国ではツバキ類の亜種分類がされており、ツバキの色を「ツバキ」と、ユキツバキと、竹ノツバキと、ギクノツバキと、孫ノツバキと、ツバキの中で、ツバキの色を「ツバキ」と、「ツバキ」と、「ツバキ」と、ギクノツバキと、孫ノツバキと、ツバキの中で、ツバキの色を「ツバキ」と、「ツバキ」と、「ツバキ」と、ギクノツバキと、孫ノツバキと、ツバキの中で、ツバキの色を「ツバキ」と、ツバキの色を「ツバキ」
ツバキ属植物の花色素に関する研究

Table 14 に示したとくに、ヤブツバキ10地点291個体、ユキツバキ3地点91個体、リンゴツバキ4地点70個体、ホウザツバキ3地点28個体で、これに台湾産のホウザツバキ1地点18個体を加えた。なおリンゴツバキは屋久島の海抜500m以上の山地に自生するものというが、九州南岸沿いには大きな果実を持つヤブツバキがあり、リンゴツバキとの関連がうかがわれる。本実験に用いたものは屋久島海岸部および種子島に自生する大果をつけるツバキを含み、純粋なリンゴツバキ集団ではない。

1982年2月から6月にかけて本邦産のツバキ花弁を、また1983年2月に台湾産のホウツバキ花弁を採取し、第2章第2節に示す煮沸乾燥法で乾燥花弁を、デシケーター（シリカゲル）内に保存し適宜実験に供した。アントシアニン色素の抽出と2次元のTLCは第2章第2節に示したものであり、クロマトグラム上的色素スポットと総色素の定量、および色素1に占めるシアニン3－ガラクトシドとグルコン線のHPLCによる定量は、第3章第2節に示す方法によった。

結果

（1）ヤブツバキ

比較的種類多様な山間部や海岸沿いにあるものを純粋型（true type）、市街地近郊や人家の傍にあるものを近郊型（urban type）として区別すると、前者は佐多岬、嘉島山、野母崎、奈良尾、呼子の個体群が、また後者は桜島、東郷、河浦、福江、郷ノ浦のものが相当する。

まず純粋型、近郊型を問わずすべて低次色素系の色素1、3～5を持つものであったが、これらでは色素1と色素5を主体とし、前者は野母崎（純粋型）の総色素量の84%を占めるものから、東郷（近郊型）の60%までの、後者は桜島（近郊型）の30%を占めるものから、野母崎の8%までの変異があった（Table 14）。

栽培種は平均値で色素1が64%、色素5が24%を占め、野生型をもほぼ類似した色素種類を示すといえる。

つぎに色素1に占めるシアニン3－ガラクトシド量を見ると、福江（近郊型）、郷ノ浦（近郊型）の29%のものから、佐多岬（純粋型）の15%までの変異があった（Table 14）。栽培種は平均値で19%であったが、この色素も野生型にほど匹敵する変異を示すといえる。

色素1と色素5の量（A）、シアニン3－グルコンシドとガラクトシド（B）およびこれらの比率（C）に関す個体分布を見ると（Fig. 32）、色素1——色素5間の関連において野母崎の、またグルコンシド——ガラ
Table 14. Summarized constitution of anthocyanins in the wild forms of Section Camellia of Japanese origin

<table>
<thead>
<tr>
<th>Species and localities collected†</th>
<th>No. of individuals</th>
<th>Total** anthocyanin</th>
<th>Constituent anthocyanin (%)**</th>
<th>Ga : C** within spot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 (Ga) G 3 & 4 5 2 & 6 7–9 10–14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. japonica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>true type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Sata-misaki</td>
<td>30</td>
<td>0.18</td>
<td>78 (12) 66</td>
<td>8 14 – – – 15 : 85</td>
</tr>
<tr>
<td>2. Mt. Kirishima</td>
<td>21</td>
<td>0.27</td>
<td>81 (18) 63</td>
<td>6 13 – + – 22 : 78</td>
</tr>
<tr>
<td>3. Nomozaki</td>
<td>30</td>
<td>0.28</td>
<td>84 (21) 63</td>
<td>8 8 – – – 25 : 75</td>
</tr>
<tr>
<td>4. Nara</td>
<td>30</td>
<td>0.35</td>
<td>80 (19) 61</td>
<td>2 18 – + – 24 : 76</td>
</tr>
<tr>
<td>5. Yobuko</td>
<td>30</td>
<td>0.34</td>
<td>79 (14) 65</td>
<td>5 16 – + – 18 : 82</td>
</tr>
<tr>
<td>urban type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Sakurajima</td>
<td>29</td>
<td>0.31</td>
<td>64 (10) 54</td>
<td>6 30 – – – 16 : 84</td>
</tr>
<tr>
<td>7. Toβ</td>
<td>31</td>
<td>0.41</td>
<td>60 (12) 48</td>
<td>14 25 – 1 – 20 : 80</td>
</tr>
<tr>
<td>8. Kawaura</td>
<td>30</td>
<td>0.26</td>
<td>63 (16) 47</td>
<td>14 23 – – – 25 : 75</td>
</tr>
<tr>
<td>9. Fukue</td>
<td>30</td>
<td>0.17</td>
<td>66 (19) 47</td>
<td>15 19 – – – 29 : 71</td>
</tr>
<tr>
<td>10. Gōnoura</td>
<td>30</td>
<td>0.14</td>
<td>69 (20) 49</td>
<td>3 28 – – – 29 : 71</td>
</tr>
<tr>
<td>C. japonica ssp. rusticana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Mt. Kurohime</td>
<td>31</td>
<td>–</td>
<td>100 (40) 40</td>
<td>– – – – 60 : 40</td>
</tr>
<tr>
<td>12. Tooka-machi</td>
<td>28</td>
<td>–</td>
<td>100 (48) 52</td>
<td>– – – – 48 : 52</td>
</tr>
<tr>
<td>13. Mt. Niōji</td>
<td>32</td>
<td>–</td>
<td>100 (59) 41</td>
<td>– – – – 59 : 41</td>
</tr>
<tr>
<td>C. japonica ssp. hozanensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Ishigaki Is.</td>
<td>6</td>
<td>0.16</td>
<td>47 (6) 41</td>
<td>2 51 – – – 13 : 87</td>
</tr>
<tr>
<td>15. Kunigami</td>
<td>21</td>
<td>0.20</td>
<td>57 (12) 45</td>
<td>13 30 – – – 21 : 79</td>
</tr>
<tr>
<td>16. Senkaku Is.</td>
<td>1</td>
<td>0.20</td>
<td>88 (8) 80</td>
<td>+ 12 – – – 9 : 91</td>
</tr>
<tr>
<td>17. Formosa</td>
<td>18</td>
<td>–</td>
<td>100 (53) 47</td>
<td>+ + – – – 53 : 47</td>
</tr>
<tr>
<td>C. japonica f. macrocarpa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Yaku Is.</td>
<td>27</td>
<td>0.20</td>
<td>61 (16) 45</td>
<td>14 25 – – – 26 : 74</td>
</tr>
<tr>
<td>19. Minami-tane</td>
<td>9</td>
<td>0.32</td>
<td>86 (19) 67</td>
<td>5 9 – – – 22 : 78</td>
</tr>
<tr>
<td>20. Naka-tane</td>
<td>15</td>
<td>0.33</td>
<td>72 (16) 56</td>
<td>10 17 – – – 22 : 78</td>
</tr>
<tr>
<td>21. Nishino-omote</td>
<td>19</td>
<td>0.33</td>
<td>79 (14) 65</td>
<td>7 14 – – – 18 : 82</td>
</tr>
</tbody>
</table>

† Numbers used correspond to the locality-numbers represented in Fig. 31.
** mg of anthocyanins/100 mg of petal dry-weight.
* Numbers used correspond to the spot-numbers represented in Fig. 4.
** Ga : cyanidin 3-galactoside, G : cyanidin 3-glucoside.
ツバキ属植物の花色素に関する研究

Fig. 32. Distribution of individuals in the wild forms of *Camellia japonica* based on the amount of constituent pigments.
A: Relationship between the amount of spot 1 and that of spot 5. B: Relationship between the amount of cyanidin 3-glucoside (Cy3G) and that of cyanidin 3-galactoside (Cy3Ga). C: Relationship between the ratio of Cy3Ga/Cy3G and that of spot 5/spot 1.

に関する個体分布を見ると（Fig. 34）、グルコン＝＝ガラクトシド間の量に関してグルコンを主体とするものから、逆にガラクトシドを主体とするものまで、大幅で連続的な分布を示した。色素比率に関する個体分布も、色素的な種内分化がグルコン＝＝ガラクトシド間で進んだと考えられる様相を示した。

色素1のみを持つという、一見して変異性に乏しいと思えるユキツバキである。しかしながら、色素1を構成する2種の色素量に関して極めて変異に富んでおり、この点ヤブツバキとはかなり異質と考えられる。

（3）ホウザンツバキ
本邦産ホウザンツバキ（石垣、国頭、尖閣列島）は
Fig. 33. Distribution of individuals in the true types and urban types of *Camellia japonica* based on the amount of constituent pigments.

A: Relationship between the amount of spot 1 and that of spot 5. B: Relationship between the amount of cyanidin 3-glucoside (Cy3G) and that of cyanidin 3-galactoside (Cy3Ga). C: Relationship between the ratio of Cy3Ga/Cy3G and that of spot 5/spot 1.

すべて低次色素系の色素1, 3～5を持つものであった。これらのうち色素1と色素5を主体とし、前者は尖閣列島で総色素の88%、石垣で47%、国頭で57%、また後者は尖閣列島で12%、石垣で51%、国頭で30%を占めた。尖閣列島を除くと、ヤブツバキに較べ色素1の量は少なく、逆に色素5の量が多いのが特徴で、この傾向はとくに石垣で強かった。

いっぱい色素1に占めるシアニジン3-ガラクトシド量を見ると、尖閣列島で9%、石垣で13%、国頭で21%（Table 14）、ヤブツバキに類似した。

ところでは、台湾省産ホウサツツバキは色素1は100%、また色素1に占めるシアニジン3-ガラクトシドは59%であり、ユキツバキと完全に一致した色素分布を示し、他のホウサツツバキとまったく異った。

色素1と色素5の量（A）、シアニジン3-グルコンがとガラクトシド量（B）およびこれらの色素比率（C）に関する傾向を図（Fig. 35）で、いずれも本邦産のもののはヤブツバキ近縁型（Figs. 32, 33）、台湾省産のものはユキツバキ（Fig. 34）に似た傾向を示した。つまり本邦産のものは色素1-3-色素5間で、また台湾省産のものはグルコン-ガラクトシド間で色素に関する種内分化が進んだものといえる。

（4）リンゴツバキ

低次色素系の色素1、3～5をすべて持つものであった。これらのうち色素1と色素5を主体とするが、前者は南種子の総色素の86%を占めるものから、屋久島の61%までの、後者は屋久島の25%を占めるものから、南種子の9%までの変異があり、ヤブツバキと類似した。色素1に占めるシアニジン3-ガラクトシド量も、西表の18%のものから、屋久島の26%までの変異で、ヤブツバキの範囲に入るものであった。

色素1と色素5の量（A）、シアニジン3-グルコンとガラクトシド量（B）およびこれらの色素比率（C）に関する傾向を図（Fig. 36）で、南種子で変異に乏しい分布を示すものの、いずれもヤブツバキの示す分布（Fig. 32）と似似した傾向を呈した。

考 察

本邦産の野生型カマリアツツバキの花弁のアントシアニン色素分布の傾向を、台湾省産ホウサツツバキを含めて概観すれば、色素構成上色素1のみを持ち、シアニジン3-グルコン＝ガラクトシドの蓄積をするユキツバキおよび台湾省産ホウサツツバキの一群と、色素1, 5を主体とし、色素1＞色素5, グルコン＞ガラクトシドの蓄積をするヤブツバキ、本邦産ホウサツツバキおよびリンゴツバキの一群とに大別できる[86]。前後のユキツバキと台湾省産ホウサツツバキは地理的にかなり離れて分布するが、色素的にはまったく同一で系統発生をしたと思われる、また後者のツバキは地理的には分布帯が連続しており、色素的にも3者を区別できる際立った特徴がないことなど、同じ系統発生をしたと考えられる。

本邦産のカマリア節の起源については津山[88]と堀田[87]の相反する論がある。まず津山は、第三紀に日本列島に分布していた古型の原ヤブツバキが氷期に多雪条件になった日本海側に残存隔離され、ユキツバキへの分化が起こったとし、現在のヤブツバキは原ヤブツバキが台湾本島まで南下し、暖期に再び北上する間にホウサツツバキやリンゴツバキを分化しながら成立したという。これに対し堀田は、氷期の南下は関東から
ツバキ属植物の花色素に関する研究

Fig. 34. Distribution of individuals in the wild forms of *Camellia japonica* ssp. *rusticana* based on the amount of constituent pigments.
A: Relationship between the amount of spot 1 and that of spot 5. B: Relationship between the amount of cyanidin 3-glucoside (Cy3G) and that of cyanidin 3-galactoside (Cy3Ga). C: Relationship between the ratio of Cy3Ga/Cy3G and that of spot 5/spot 1.

四国に至る太平洋側で止まり、その間南西諸島でリンゴツバキを、また日本海側でユキツバキを分化したという。

ヤブツバキとユキツバキを形態で比較すると、葉柄に短毛がなく、房数や胚数の多いユキツバキが原形であることは周知のとおりである98, 107, 108, 112-114。つまりヤブツバキからユキツバキが分化したとする稲田の考えは、色素的には複雑なものから単純なものへの変化で妥当するとしても、事実を得ないこととなる。

したがって津山100の推論を借りれば、最後の氷期以前に本邦に分布していた原ヤブツバキは、ユキツバキ型の色素1のみを持ち、かつ色素1に多量のシアニジン3-ガラクトソドを持っていたと思える。そこで氷期の到来とともにかなり南方までいったん後退したが、残存隔離したもののひとつは台湾省産ホウザンツバキへの分化を、いつのまにか日本海側のユキツバキへの分化をおこしたと考えれば、両ツバキが同じ色素型を持つことの理由づけとなる。

ところで尖閣列島は中国大陸、台湾および沖縄本島のほぼ中間に位置し、本邦ではもっとも大陸に近い、この島のホウザンツバキはヤブツバキと同じ色素型、これと歩調を合わせるかのように他の本邦のホウザン
Fig. 35. Distribution of individuals in the wild forms of *Camellia japonica* ssp. *hozanensis* based on the constituent pigments. Mark * represents an individual collected from Senkaku Island.

A: Relationship between the amount of spot 1 and that of spot 5. B: Relationship between the amount of cyanidin 3-glucoside (Cy3G) and that of cyanidin 3-galactoside (Cy3Ga). C: Relationship between the ratio of Cy3Ga/Cy3G and that of spot 5/spot 1.

ツバキもヤブツバキ型であったより。ウルム水期後の氷河の後退に伴う海進によって、ヤブツバキ型の色素を持ったホウザンツバキがまず琉球列島の島々に根をおろしたことは容易に推定できる。しかしながら本邦に定着したホウザンツバキが、はたしてどのツバキから分化したのか——ユキツバキ型の原ヤブツバキか、またはヤブツバキ型の大陸産のものかについては言及できない。

原久・種子島の離島化や現在の日本海の形成が地球的のに新しく、ウルム水期後の海進によって、現在の海流と同じ流れをするようになったのは、約1万年～7000年前である47, 69, 128。したがって琉球列島に定着したホウザンツバキは、この流れに乗って分布域をさらに北へ拡大したと考えられる117。つまり原久

島でリンゴツバキへの変異分化と、九州を経て太平洋と日本海側に分布するヤブツバキへの分化を伴った拡大であった——色素的にはこのように結論づけられる。

要 約

2次元TLCとHPLCを用い本邦産カメリア節ツバキ野生型の花弁のアントシアニン色素を精査し、色素分布の様相を検討した。

1. ヤブツバキ、本邦産ホウザンツバキ、リンゴツバキは低次色素系の色素1と色素5を主体とし、かつ色素1に占めるアントシアニン3−ガラクトシド量は少なかった。これに対しユキツバキ、台湾産ホウザンツバキは色素1は100％を占め、かつ色素1に占めるアントシアニン3−ガラクトシドはグルコースとほぼ等量と、
多かった。

2. 構成色素の蓄積の変異はヤブツバキ、本邦産ホウザンツバキ、リンゴツバキは色素1——色素5間で、またユキツバキ、台湾省産ホウザンツバキはシアニン3—グルコンド染料の関係で観察された。

3. 以上の色素分布の様相に加え、種の分布域、形態および地史を踏まえると、ヤブツバキとリンゴツバキは本邦産ホウザンツバキから異化分化し、ユキツバキと台湾省産ホウザンツバキは残存隔離した古型ツバキから分化したと推定する。

第3節 中国産カメリア節ツバキ野生型のアントシアニン色素分布の様相と種分化

材料と方法

本節で用いたツバキ花弁は Table 15 および Appendix 3 に示したごとくで、サルウィンツバキ 3 個体、ピタールツバキ・ピタール種（C. pitardii var. pitardii）1 個体、ピタールツバキ・雲南種（var. yunnanica）1 個体、宛田紅花油茶 9 個体、南山茶 11 個体、浙江紅花油茶 5 個体、ホンコンツバキ 6 個体である。なお野生型トウツバキは入手不能であったので、野生型の実生より選抜された栽培種と、野生型そのものとされる栽培種の 3 個体で代替させた。これらの中のピタールツバキ・ピタール種はオーストラリア（R. M. Withers, メルボルン市）より、雲南種は東京農工大学農学部より、またトウツバキは久留米ツバキ愛好会より入手し、その他はすべて中華人民共和国と香港の現地で採集した。

1982年から1984年にかけて花弁を採集し、第2章第2節に示す煮沸乾燥法で乾燥花弁を得、デシケーター（シリカゲル）内に保存、適宜実験に供した。アントシアニン色素の抽出と 2 次元の TLC は第2章第2節に示したとおりで、クロマトグラム上の色素スポットと
緑色素の定量、HPLC によるシアニジン 3-グルコンドとガラクトシンの分離定量は第 3 章第 2 節に示す方法によった。

結 果
（1）サルウィンツバキ、トウツバキ、ピタールツバキ
3 種とも低次色素系の色素 1、3 ～ 5 を微量持つ個体や、トウツバキ「ワイルド・フォーム」の緑色素の14%を占める個体もあったが、おおむね高次色素系の色素10～13を主体とした。
第2章でも触れたがサルウィンツバキは色素10・12型で、これらではほぼ100%を占めた（Table 15）。またトウツバキは色素11・13型で、これらは平均値で緑色素の90%を占めた。
これに対し、ピタールツバキはピタール種と亜 Gün 種でまったく異なった色素分布を示した。つまり両者とも高次色素系を主体とするが、前者は色素10を緑色素の33%、色素12を67%持つサルウィンツバキ型を示したのに対し、後者は色素11を25%、色素13を67%持つトウツバキ型を示した（Table 15）。
（2）宛田紅花油茶
9 個体中5 個体は低次色素系の色素 1、3 ～ 5 のみを持つものであったが、残りの4 個体は低次色素系に、緑色素の6 ～ 12%に相当する高次色素系の色素10が混在した（Appendix 3）。
低次色素系を見ると、色素1 と色素5 を主体とし、前者は平均値で緑色素の56%、後者は28%を占めた。
また色素1 に占めるシアニジン3-ガラクトシンは土 ~30%の変異を示したが（Appendix 3）、平均値は14%と、ヤブツバキに類似した（Table 15）。
色素1 と色素5 の量 (A)、シアニジン3-グルコンドとガラクトシン (B) およびこれらの色素比率 (C) に関する個体分布を見ると（Fig. 37）、いずれもヤブツバキ（Fig. 33）と相違をほとんどない様相を示した。
つまり低次色素系に限っていればヤブツバキ型の色素分布を示す種といえる。
（3）南山茶
すべて低次色素系の色素1、3 ～ 5 を持つものであった。これらのうち色素1 と色素5 を主体とし、前者は平均値で緑色素の71%, 後者は23%を占めた（Table 15）。また色素1 に占めるシアニジン3-ガラクトシン量を視ると、ガラクトシンをほとんど持たない点で特徴的であった（Appendix 3）。つまり色素1 ～色素5 間の量に関してはヤブツバキ型であるが、グルコンド ～ガラクトシン間の量に関してはサザンカ型といえる。色素1 と色素5 の量 (A)、シアニジン3-グルコンドとガラクトシン (B) およびこれらの色素比率 (C) に関する個体分布を見ると（Fig. 37）、色素1 ～色素5 間ではヤブツバキ（Fig. 33）に、またグルコンド ～ガラクトシン間ではホウサツバキの尖銳・石垣個体群（Fig. 35）に類似する分布を示した。
本章第2 節で本邦産ホウサツバキの色素分布の様相をヤブツバキの範囲に入るとしたが、このことからすれば本種をヤブツバキ型と考えてもよいと思われる。しかしガラクトシン量の少なさは本種の特徴のひとつといえよう。

Table 15. Summarized determination of anthocyanins in the wild forms of Section Camellia of Chinese origin

<table>
<thead>
<tr>
<th>Species</th>
<th>No. of individuals</th>
<th>Total* anthocyanin</th>
<th>Constituent anthocyanins (%)</th>
<th>Ga: C* (%) within spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. saluenensis</td>
<td>3</td>
<td>0.07</td>
<td>+ (-) (+)</td>
<td>100 (+)</td>
</tr>
<tr>
<td>C. reticulata (cv.)</td>
<td>3</td>
<td>0.16</td>
<td>4 (+) 4</td>
<td>4 90</td>
</tr>
<tr>
<td>C. pil mauri</td>
<td>1</td>
<td>0.02</td>
<td>+ (-) (+)</td>
<td>100 (+)</td>
</tr>
<tr>
<td>C. yunanica</td>
<td>1</td>
<td>0.07</td>
<td>+ (-) (+)</td>
<td>8 92</td>
</tr>
<tr>
<td>C. polyodonta</td>
<td>9</td>
<td>56(8 48)</td>
<td>17 23</td>
<td>4 +</td>
</tr>
<tr>
<td>C. semiserrata</td>
<td>11</td>
<td>71(+ 71)</td>
<td>6 23</td>
<td>9 0</td>
</tr>
<tr>
<td>C. chekiangoleo</td>
<td>5</td>
<td>98(41 57)</td>
<td>2 + + +</td>
<td>42: 58</td>
</tr>
<tr>
<td>C. hongkongensis</td>
<td>6</td>
<td>15(+ 15)</td>
<td>20 54 11</td>
<td>2 98</td>
</tr>
</tbody>
</table>

*1 mg of anthocyanins / 100 mg of petal dry weight.
*2 Numbers used correspond to the spot-numbers represented in Fig. 4.
*3 Ga: cyanidin 3-galactoside, G: cyanidin 3-glucoside.
ツバキ属植物の花色素に関する研究

Fig. 37. Distribution of individuals in the wild forms of camellias of Chinese origin based on the constituent pigments.
A: Relationship between the amount of spot 1 and that of spot 5. B: Relationship between the amount of cyanidin 3-glucoside (Cy3G) and that of cyanidin 3-galactoside (Cy3Ga). C: Relationship between the ratio of Cy3Ga/Cy3G and that of spot 5/spot 1.

（4）浙江紅花油茶

5個体すべてが低次色素系を持つものであった、これらのうち色素1を主体とし、平均値で総色素の98%を占めた（Table 15）。また色素1に占めるシアニジン3-ガラクトシド量は13%を占めるものから、64%までの変異があったが（Appendix 3）、平均値で42%と、ユキツバキや台湾省産のホウザツバキと近似した。

色素1と色素5の量（A）、シアニジン3-グルコンドとガラクトシド量（B）およびこれらの色素比率（C）に関する個体分布を見ると（Fig. 37）、いずれもユキツバキや台湾省産ホウザツバキの分布（Figs. 34, 35）と軌をひとつにした様相を示した。

（5）ホンコンツバキ

5個体すべてが低次色素系を持つものであったが、色素1、3～5に加え、サザンカに特徴的に出現するデルフィニジン系の色素2、6を持つ点で、他のカメリア節と異なった（Appendix 3）。また低次色素系のうち色素5を主体とし、平均値で総色素の54%を占めた（Table 15）。色素1に占めるシアニジン3-ガラクトシド量も平均値で2%と微量で、これらもサザンカと一致した。

色素1と色素5の量（A）、シアニジン3-グルコンドとガラクトシド量（B）およびこれらの色素比率（C）に関する個体分布を見ると（Fig. 37）、いずれもサザンカ型で（Figs. 13, 21）、他のカメリア節とかなり異質の色素分布を示した。

考

察

中国大陆産カメリア節ツバキの野生型花弁に見られるアントシアニン色素分布の様相を、概して示すとTable 16のごとくである。まず高次色素系を主体とするサルウィンツバキ、トウツバキ、ビタールツバキの一群と、低次色素系を主体とする苑田紅花油茶、南山
茶、浙江紅花油茶、ホンコンツバキの一群に大別できる。加えてこれらのツバキは、構成色素のどれを主体とするか、あるいはデルフィニジン系色素や多量のシアニジン3-ガラクトースドを持つかを指標にすれば、さらに細かく分類できる。

中国大陆産のカマリアツバキの色素分布（色素型）の違いは、前章に述べたように、色素のヒドロキシル化、グリコシル化あるいはアシル化を支配する比較的少数の遺伝子の作用の違いに基づくものと考えられる。したがって、種の分類が色花に関する突然変異を伴うとすれば、ツバキの系統発生の方向は、一般的に植物に見られるように、色素生成に関する優性遺伝子の劣性化を伴う種の分布移動とするのが事実を得ていると考える。

このような観点で中国大陆産のカマリア節に序列をつけると、まず遺伝的に優劣性の色素10、12を生成するツバキに始まり、劣劣性の色素1を主体に生成するツバキに終わる、一連の流れを示唆できる。つまり色素の遺伝的な優劣性の序列は色素10×12型＞色素11×13型＞色素9型＞色素1型の生成順で、一般的に種をあてはめると、サルウィンツバキ、ピタールツバキ・ピタール種＞トウツバキ、ピタールツバキ・雲南種＞宛田紅花油茶＞ホンコンツバキ＞南山茶、浙江紅花油茶の順となる。

ところでツバキの系統発生について論じる場合、種の地理的な分布域や種を区別する重要な形質を考慮する必要がある。まず Fig. 38 に分布域を示すが、雲南省南部のトウツバキに始まり、サルウィンツバキ、ピタールツバキ、宛田紅花油茶を経て、南山茶を経由へ南山茶とホンコンツバキに至る分布と、いまひとちは東北北上海浙江紅花油茶に至る分布とがある。

このような分布域の本邦からの距離と、重要な形質の変化の宿存性や子房・花柱の有毛性に着目し、津山[10]はトウツバキに始まり、サルウィンツバキ——ピタールツバキ——宛田紅花油茶——南山茶——浙江紅花油茶と続くカマリア節の主系列を提唱した。これに対し Chang[19] は「四川省南部のツバキ群の生息」に関する談話で、中国的古大陸とされる四川省南部をカマリア節の起源センターとする考えを明らかにした。つまり以上の考えによれば、サルウィンツバキやピタールツバキを起源センターにその役も近いツバキとして捉えることができる。同様に、サルウィンツバキを発生の祖においては Parks と Griffith である。細胞遺伝学の手法を用い、2倍体のサルウィンツバキにヘテロゲナ系が見出し、6倍体のピタールツバキ・雲南種を生じたという[9]。

したがってこのような分布域や形質、あるいは細胞遺伝の様相を踏まえ、これにアントシアニン色素分布のそれを加味すると、Fig. 39 に示す2つ系統発生の系列表を考察ができる。ひとつは低次色素系に高次色素系が混在する宛田紅花油茶から、ヤブツバキ型

Table 16. Summarized constitution and accumulation of anthocyanins in the wild forms of the Section Camellia of Chinese origin

<table>
<thead>
<tr>
<th>Species</th>
<th>Occurrence of*</th>
<th>Accumulation of*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Higher Rfs</td>
<td>Lower Rfs</td>
</tr>
<tr>
<td>C. saluenensis</td>
<td>mj</td>
<td>tr</td>
</tr>
<tr>
<td>C. pitardii var. pitardii</td>
<td>mj</td>
<td>tr</td>
</tr>
<tr>
<td>C. reticulata</td>
<td>mj</td>
<td>mi</td>
</tr>
<tr>
<td>C. pitardii var. yunnanica</td>
<td>mj</td>
<td>tr</td>
</tr>
<tr>
<td>C. polyodonata</td>
<td>mi</td>
<td>mj</td>
</tr>
<tr>
<td>C. semiserrata</td>
<td>mj</td>
<td></td>
</tr>
<tr>
<td>C. chekiangoleosa</td>
<td>mj</td>
<td></td>
</tr>
<tr>
<td>C. hongkongensis</td>
<td>mj</td>
<td></td>
</tr>
<tr>
<td>C. japonica</td>
<td>mj</td>
<td></td>
</tr>
<tr>
<td>C. japonica ssp. rusticana</td>
<td>mj</td>
<td></td>
</tr>
<tr>
<td>C. sasamuga (cvs.)</td>
<td>mj</td>
<td></td>
</tr>
</tbody>
</table>

Numbers used correspond to the spot-numbers represented in Fig. 4.
ツバキ属植物の花色素に関する研究

Fig. 38. Distribution of camellia species in China.

の南山茶とユキツバキ型の浙江紅花油茶が分化するもので、いまひとつは南山茶から浙江紅花油茶が分化するものである。南山茶のグルコース→ガラクトシド型の蓄積をこの種の特徴として捉えると前の、またユキツバキ型の浙江紅花油茶のグルコース→ガラクトシド型の範中に入るとすれば後者の系列が妥当と思える。なおホンコン
ツバキはあくまで南山茶に隣接した分布域を持つこと
でこれらの系列に入れたが、色素的には他の種のツバキ
との交雑や、もっと複雑な系列をたどった可能性があ
ると考えられる。

これらの系列に従って種をながめると、遺伝的に最
優性の色素生成をするサルウィツバキから、東西2
方向へ異質の分化を遂げたことが分かる。ひとつはト
ウツバキへの分化と、いまひとつはユキツバキ型の浙江
紅花油茶への分化である。

ところで本章第2節ではツバキを本邦産のホウ
ザンツバキより派生したとし、中国大陸産のユキツバキ型の浙江
紅花油茶や南山茶がユキツバキ型の色素分布を示すこと
などは、あるいは両種のいずれかに本邦のホウザンツ
バキの源をたどれまいか、また浙江紅花油茶はユキツ
バキとも台湾省産のホウザンツバキと同じ色素分布
を示すが、この種にも後者の2種のツバキの源をたど
れまいか、このように考えると、本邦産のカマリア
節ツバキは中国大陸産のツバキからひとく孤立したもの
ではない——色素的にはこの結論づけられよう。

要 約

2次元TLCとHPLCを用い中国大陸産カマリア
節ツバキ野生型の花弁のアントシアニン色素を精査し、
色素分布の様相を検討した。

1．サルウィツバキ、ピタールツバキ・ピタール
種は高次色素系の色素10, 12を主体とし、トウツバキ、
ピタールツバキ・雲南種は高次色素系の色素11, 13を
主体とした。

2. 宛田紅花油茶は低次色素系に高次色素系が混在
したが、低次色素系では色素1, 5を主体とし、色素
1に占めるシアニジン3-ガラクトシド量は少なかった。

3. 南山茶は低次色素系のみで、色素1, 5を主体
Fig. 39. Phylogenetical sequences of the wild forms of the Section Camellia of Chinese origin based on the constituent pigments.

とし、色素1に占めるシアニジン3-ガラクトシンド量はほぼゼロに等しかった。

4. 浙江紅花茶は低次色素系のみで、色素1が100％を占め、色素1に占めるシアニジン3-ガラクトシンドはグルコシンとほぼ等量と、多かった。

5. オンコンツバキは低次色素系のみで、色素5を主体とし、色素1に占めるシアニジン3-ガラクトシンドはほぼゼロに等しかった。またデルフィニジン系の色素2、6を併せ持つものであった。

6. 以上の色素分布の様相を加え、種の分布域、形質および色素の遺伝を踏まえると、ツバキやピクールツバキはサルウィンツバキから分化し、ピクールツバキ・ピタールツバキ種——宛田紅花茶——南山茶——浙江紅花茶と続く、地理的に東北上した系統発生上の系列を推定できる。

第5章 総 括

ツバキ愛好家が観賞用のためにもっとも注目してい るにカメリア節ツバキがある。本邦産のものではヤブツバキ、ユキツバキ、リンゴツバキ、ホウサツ バキがそうである。これらは古くから栽培され、命名に若干の重複があるが、ひと口に2000以上の品種が登 録され、多様な形態変異を持つ。

花の形の変異性を調べたものとして、津山[111]と石 沢・蔗花[112]はヤブツバキ野生型には種々の変異があり、がらも八重咲ぎは見られず、むしろユキツバキ野生型に著しい変異が見られるという。またヤブツバキと ユキツバキの雛種のユキバタツバキに花形のもっとも 著しい変異があるという。つまり津山[109, 110]も指摘す るように、ヤブツバキとユキツバキの複合によって、 ヤブツバキ栽培種に形質の多様性がもたらされたとさ れる。

同様な複合体形成による形質の多様化は、カメリア 節の起源センターに分布するトウサキ、サルウィンツ バキおよびピタールツバキにも該当する[108]。近年で はヤブツバキ——サルウィンツバキ間[71,72,73]、ブラカメリア節のサザンカ——カンツバキ間[70]およびカメリ ア節とブラカメリア節をまたぐヤブツバキ——ハルサ ザンカ——サザンカ間[109,110,111]の複合が明らかにさ れたのに近っている。しかしながら、このような種間で比 較的容易に複合体を作るとする事実は、外部形態上の 形質でツバキを分類することへの疑問を生じたともい える[82,72]。

ところで、これまで多くの植物化学者が植物体内成 分の種類と分布を明らかにする研究に従事し、いわゆ る成分分類学（chemotaxonomy）が体系づけられる に至った。最近では、とくに低分子レベルの成分の種 間および種内変異を扱う例も多く、集団を基礎とした 詳細な分析の結果、成分的に見た種の構造が明らかに されるようになり[105,106]、従来の分類学的な観点に関 しても多角的な検討が加えられるようになった。

これらの代表的例として、アカネ科 Cinchona 属のアルカロイド成分[17]、Juniperus 属のテルペン成 分[2,119]、ブクタの仲間に Ambrosia 属のテルペン 成分[27]、シロツメクサのシアン化合物[22,23]、ウスバサイシソの精油成分[29]およびネギのフラボノイド類[27] を指標とした研究をあげることができる。つまり分類 や分化を扱う際に形態や分子的な手段を補足する重要 な決め手のひとつとして、低分子化学成分を用いるこ とに可能となった。

以上の経緯を背景に本研究は花卉のアントシン アン色素を指標として、ツバキ栽培種や野生型の種間 および種内構造を明らかにすることを目的とし、とく に色素分布の様相で系統や分化を捉えることを試みた。
ツバキ属植物の花色素に関する研究

ものである。得られた結果を総括するとつぎのとおりである。

1. ツバキ花弁に見られるアントシアシン色素の性状と遺伝的背景

花弁における色素合成が比較的遅くに進むものと、逆に急速に進むものがあるが、ツバキは後者に属するといえる。しかも色素生成を開始すると、短時間のうちにいったん最終的な色素構成に至る合成を行う特徴を持つ。この合成の速さは温度や光などの外的条件で、色素生成は量的および質的な変化を受けにくいことが示されており、その意味では遺伝的に強く制御された色素生成機構を持つ植物と考えられる。

ツバキに見えるアントシアシン色素は15個で、モノサイド群の低次色素系10個とダイサイド群と推定され高次色素系の9個で大別できる82, 83。低次色素系の9個をTLC, PPCで同定したが、これらの色素構造からヒドロキシル化、アシル化およびグリコニル化の色素構造が示されていることが分かった。そして、まずそれぞれの修飾に関与する最低3個の遺伝子の存在を想定することができる。

グリコニル化に限っても3個の遺伝子を想定できる。グサレーテー——ガラクトシン間、モノサイド——ダイサイド間、色素10、12——色素11、13間がそうである。つまり上述のヒドロキシル化とアシル化の2個を加えると、つぎに5個の遺伝子が色素生成に関与すると思われる。

これらの遺伝子の優劣関係は詳細な交雑実験の結果を待って判断すべきである。しかししながら少なくとも卷間にいわれるように、ダイサイド群はモノサイド群より、デルフィニジン系はシアンジン系より、またアシル化したものはそうでないものより遺伝的に生成が優れている。この点遺伝の起源のツバキの色素分布を精査したことで、ダイサイド群はモノサイド群より生成は遺伝的に優れていることが明らかになり83。上記の推定の正しさを一部裏付けた。

2. ツバキ栽培中に見られるアントシアシン色素分布と品種分化

栽培中のアントシアシン色素構成を見ると、種で構成を異にするものであった82—85。たとえば主体とする色素を拾うと、ツバキの色素11、13、サザンカの色素5、ヤブツバキの色素1、ユキツバキのシアンジン3—ガラクトシンなどのものが見られ、これに加えサザンカはデルフィニジン系色素を持ち、サルウィンツバキの血を引く種類は色素10、12を持つ。

このような色素構成上の特徴異性を扱った最近の例として、エリカ属86、フクシャ属87、マメ科88、ヒビスカス属89、ノボタキ属90およびツバキのアントシアシンとフラボノール色素を指標とした研究をあげることができ、つまりツバキの場合にも、前述した色素類がいわゆる化学的指標（chemical marker）として成分分類に完全使用可能ですと考えられる。

ツバキの色素構成は種内変異から品種分化を類型化できる。たとえばヤブツバキは色素1を主体とするが、実際にはこの色素を50%持つ品種から、色素5を主体とするものまでの大幅な変異があった82。このことは色素1——色素5間の量に基づく品種分化を遂げた種としてヤブツバキを捉えることができる。このような観点で他のツバキを見ると、ツバキのシアンジン3—ガラクトシン間の相変90に基づくもの。ツバキの主要な2色素間の相変90に基づくもの、逆にサザンカのように色素5の量に変異は見られず82。花色に関する品種分化をさほど遂げなかったものなどがある。

これに対し、サザンカは種内複雑な成分で種内に倍数性の異なる系統を持つ。このものほどは倍数性の違いに基づく品種分化を遂げた種として捉えることができ82。あるいは種間種ツバキのように、両親種の色素に関する遺伝的背景に基づく分化を遂げた種もあり82、多様といえる。

3. チリナミネツバキ野生型にみられるアントシアシン色素の分布と系統発生

チリナミネツバキ野生型を色素型で分類する場合、色素1、シアンジン3—ガラクトシンおよび高次色素系の3色素群を指標することが重要である。これらの分布に加え、色素の遺伝、種の地理的分布、形態、地史的な古さ、系統学的観点を踏まえ、さきの系統発生上の系列を想定できる。

起源センターとされる川南両部にも分布し、最優性の色素生成機構を持つサルウィンツバキが恒常を発し、一方は西へ、ピタールツバキ・雲南種を経てツバキへ至る分化と、いま一方は東へ、ピタールツバキ・ピタール種を経て低次色素系を持つ種へ至る分化である。つまり色素的には優性遺伝子の効性化を伴った分化・移行という秩序を呈出する。

Van Steenis116は、温暖な環境下では非適応ともいえる形態分化や、無適応的進化がおこるという。たとえばよくまとまった種群は同所的に生育するが、突然の遺伝的変化、それも1遺伝子の突然変異といったものが温暖な環境下に生じとなって、種分化に重要な役割を果たすという。温暖で快適な照葉樹林帯の住人と
されるカタリア節がそうではなかったろうか。おそらく花色素などという、いわばアクセスリーの種分化を遂げつつ、互いに連なる複合体を形作ったのではあるまいか。

ところでいまひとつ、種分化が本邦で演じられたことになる。琉球列島先島や尖閣列島に最初に定着した本邦産のホウレンソウツバキが演じる系統発生形である、これらの列島々に端を発し、屋久島に至るまでのツバキとしての変異分化と、さらに北上する間のヤブツバキへの変身と、九州北部におけるサザンカとの接触によるハルサザンガを誕生させたことである。あるいは、残存隔離して分布するユキツバキとの接触で現在のヤブツバキ栽培種を生み出したことも、もっとといえば本邦産のホウレンソウツバキに由来する出来事である。

以上のよう考えると、カタリア節の起源センターに位置するサルウィンツバキから、乃至紅花油茶や南山茶を経て、ヤブツバキやツバキ栽培種に至る一連のつながりを想定でき、本邦のツバキが中国大陸産のカタリア節からひとつ孤立したものではない——色素的にはこう結論づけられるのではあるまいか。

文献	
4) 苍井三郎・太田英明・長楽・豊: 巨峰ブドウ果皮中の少量アントシアニン色素について. 日食工誌, 24(7), 346-349 (1977)
5) 苍井三郎・太田英明・長楽・豊: 松本道利・小林邦彦: 岐阜県ブドウ, 岐阜県ブドウのアントシアニン色素について. 日食工誌, 24(10), 21-23 (1977)
6) 安藤芳藤: タウツバキの神経. 新花, 99, 60-64(1978)
7) 有關健・坂田信二・青木正隆: 河原拓枝: ヤブの花色に関する研究. 特に遺伝子学的な学問とその育種に対する応用について. 岐山農学技術報告, No.27, 23-30 (1977)
21) Crowden R. K., Wright, J. and Harborne, J. B.: An-
ツバキ属植物の花色素に関する研究

28) 藤田真一・永川正勝・藤田安二：ツバキ科植物およびサザンカの精油. 農化, 51, 253–258 (1977)
33) 藤原 要・石沢 進：ユキツバキに関する研究(第1報). 新潟県における野生および栽培ツバキの変異と分布について. 農学雑, 30, 270–290 (1961)
34) 藤原 要・田中秀明：ツバキ属の類縁関係について. クロマトグラフィーによる比較. 寒学要旨, 昭47秋, 290–291 (1972)
36) 箱田直紀・足立尚義：ツバキ属の原産種. 西武植物園報, 1, 2–54 (1985)
46) 細田高志・長田守彦・稲葉久雄：ボタン花卉色素に基づく品種分類. 寒学要旨, 昭40秋, 304–305 (1985)
49) 石沢 進・袁原：ツバキ品種の成立におけるユキツバキとヤブツバキの役割(第1報). ユキツバキとヤブツバキの中間型の分布変異. 寒学, 14, 57 (1964)
50) 小林英春：ツツジ類の花色に関する研究(第1報). アザレア園芸品種の成立について. 寒岡園試報, 16, 6–12 (1978)
52) 近藤悟彦：ツバキ属の交雑に関する細胞学的研究. 新花, 99, 41–53 (1978)
59) 濱 正雄・井原正二：日本列島. p.1–209, 岩波書店 (1958)
60) 島部裕・坂本元浩・和田一：Rhododendron 属植物の花色素変異に関する総合的解的. 寒学要旨, 昭58秋, 378–379 (1983)
61) 島部裕・上田俊幸・森本一幸・和田一：サツツジおよび菖蒲山系ツツジの花色変異について. 寒学要旨, 昭59秋, 302–303 (1985)
62) Miyajima, I., Uemoto, S., Sakata, Y., Arisumi, K., and
坂田祐介

Kagoshima University
NII-Electronic Library Service

50

65 永田忠博・酒井啓介：カリメア属植物中のザサンカンの分布. 茶技研, 67, 1–4 (1985)
66 長戸から: アイソサイド変異に基づく我が国のツバキ属植物の種間および種内関係. 花雑. 29, 49–58 (1979)
68 中尾佐助・山下孝介：植物個体群の変異について. 飼・酒井共編. 集団遺伝学, p.245–256, 倍信館 (1956)
79 坂田祐介・上田俊平：スイートピーの花色に関する研究（第1報），春咲種のアントシアニン色素生成について. 種学, 45, 181–186 (1976)
80 坂田祐介・関兼健：スイートピーの花色に関する研究（第2報），黒の発育に伴う色素生成について. 種学, 45, 372–373 (1977)
81 坂田祐介・永井孝：関兼健：ツバキ属植物の花色素に関する研究. 1. 長崎県平戸市におけるヤブツバキ，サザンカおよびハルサザンカのアントシアニン色素について，鹿児島農学報告, No.30, 35–40 (1980)
89 白石真・渡部由香：ブドウ果実の着色に関する研究（第1報）。巨峰品種群のアントシアニン組成. 園学要旨, 昭59春, 90–91 (1984)
90 白石真・渡部由香：ブドウ果実の着色に関する研究（第2報）。Steuben, Buffalo のアントシアニン組成. 園学要旨, 昭60春, 499 (1985)
ツバキ属植物の花色素に関する研究

51

99) 田中孝孝・菊田祥: ツバキ属の類縁関係について、(第2報) ビアントル、シノツバキ、ハルサンサカおよび種間

種群の関係に関するpaper chromatographyによる考察. 植物学雑誌, 昭46, 368–369 (1973)

100) 田中孝孝・上本俊平・菊田祥: ハルサンサカの成立に関する研究(第3報). 花色素体によるハルサンサカ品

101) 田中孝孝・上本俊平・菊田祥: ハルサンサカの成立に関する研究(第5報).「図形」および「図形」の互生群の色素体数

102) 立石新吉・菱尾薰: ツバキ、ユキツバキおよび

その亜種ツバキの葉の組織細胞の特性. 特にその群分類学への

応用. 植物研究雑誌, 45, 53–64 (1970)

103) 土岐捷次郎・上本俊平: キンチョウの花色素に関する

研究(第3報). 花の発達に伴うcyanidin-3-glucoside

および5-rutinosideの消長. 植物学雑誌, 46, 343–348 (1977)

104) 土岐捷次郎・上本俊平: キンチョウの花色素に関す

る研究. 花の発達に伴うアントルビンおよびオロロンの

消長. 南九関学研究, 13, 89–94 (1977)

105) Turner, B. L.: Plant chemoecosystematics and phy

106) Turner, B. L.: Chemosystematics: Recent develop

ments. Taxon, 18, 134–151 (1969)

107) 津山 雅: ツバキ及びユキツバキに関する二・三の形

態学的所見. 植物研究雑誌, 31, 225–228 (1954)

109) 津山 雅: 我国の栽培ツバキについて. 日本植物園協

会報, 1956, 9–21 (1957)

110) Tuyama, T.: The wild camellias of the japonica

group in Japan and their relationship to garden varie

ties. Amer. Camellia Yearbook, 1957, 1–16 (1958)

111) 津山 雅: 野生ツバキの八重化する傾向について. 植

物研究雑誌, 38, 289–298 (1963)

112) 津山 雅: ユキツバキの子房室数および胚珠数が多い

傾向について. 植物研究雑誌, 39, 44 (1964)

113) 津山 雅: 浙江紅花油茶とツバキとの分類学的関係. 植物研究雑誌, 41, 43–48 (1966)

115) Uemoto, S., Tanaka, T. and Fujieda, K.: Cytogenetic

studies on the origin of Camellia vernalis. I. On the

meiotic chromosome in some related Camellia forms in

116) 上本俊平: ツバキ属植物の分布と分化. ガーデンライ

117) Uemoto, S. and Caddell, G. M.: The distribution of wild

Camellia japonica in Japan and South Korea. Internationa

Camellia J., 17, 73–76 (1985)

118) Van Steenis, C.G.G. J.: Plant speciation in Malac

e, with special reference to the theory of non-adaptive

saltyatory evolution. Biol. J. Linn. Soc., 1, 97–133

(1969)

119) von Rudloff, E., Irving, R. and Turner, B. L.: Reevalua

tion of allometric intragression between

Juniperus ashei et J. virginiana using gas chromato

graphy. Amer. J. Bot., 54, 660 (1967)

phoresis of taxonomic and breeding problems in

121) Wendel, J. F. and Parks, C. R.: Genetic control of

isozyme variation in Camellia japonica L. (Theaceae).

J. Hered., 73, 197–204 (1982)

tion in Camellia japonica L. using isozyme polymor

(1983)

123) Wendel, J. F. and Parks, C. R.: Genetic diversity and

population structure in Camellia japonica L. (Theaceae).

Amer. J. Bot., 72, 52–65 (1985)

126) Wulf L. W. and Nagel, C. W.: Analysis of phenolic

acids and flavonoids by high pressure liquid chromato

127) 安江政一・板谷一元・見谷トヨ・和田 章: ネジキ

Lynxia oswalda Sieb. Zucc. vari. elliptica Hond. Maz. の産地による相違と isoengelith の単雑について. 植物学雑

誌, 85, 1090–1092 (1965)

128) 安間茂: 瑞師列島—生物にみる成立の謎. p. 1–208,

東海大学出版会 (1982)

130) 橋本俊一・山地英子・斎藤規夫: ツバキ属植物に存

在するアントラセニン色素 (Dp. 3-glucoside と Cy. 3-p

coumarylglucoside) の同定. 植物学雑誌. 昭60, 300–301 (1985)

131) 吉川和男: ツバキの種間雑種. 早咲品種育成の試み.

京都園芸, 81, 21–24 (1982)
Summary

The present investigations were carried out to obtain some detailed figures concerning the phylogenies of the genus *Camellia*, using anthocyanins in petals as chemical markers. The results obtained are as follows:

1. On the establishment of the pigment-analysis-methods and some characteristics of anthocyanins found in the flowers of the genus *Camellia*.

Fourteen anthocyanin-spots, spot 1 to spot 14, were distinguished obviously on a two-dimensional thin layer chromatogram (TLC-plate), using the following solvent systems: n-BAW (II) (n-butanol/acetic acid/water, 1/2/7 by vol.) for the first development and n-BAW (I) (n-butanol/acetic acid/water, 4/1/5 by vol., upper layer) for the second. Of these pigment spots, nine spots (1~9) were the lower-Rf pigments (monoglycosides) characteristically distributed in the species of Japanese origin, *i.e.* *C. japonica*, *C. japonica* ssp. *rusticana* and *C. sasanqua*; and five spots (10~14) were the higher-Rf pigments (mono-diglycosides or di-monoglycosides) distributed in the species of Chinese origin, *i.e.* *C. saluenensis* and *C. reticulata*.

Of these anthocyanins, spots 1, 2, 5 and 6 detected in the flowers of *C. hiemalis* were identical with cyanidin 3-glucoside, delphinidin 3-(p-coumaryl) glucoside, cyanidin 3-(p-coumaryl) glucoside and delphinidin 3-glucoside, respectively. Furthermore, as a result of the characterization of spot 1 detected by high performance liquid chromatography (HPLC) in the flowers of wild *C. japonica* ssp. *rusticana*, it was identified to be a mixture of cyanidin 3-glucoside and cyanidin 3-galactoside. This was the first case that an occurrence of 3-galactoside of cyanidin was detected in the genus *Camellia*.

The constitution and accumulation of anthocyanins in the boiled and air-dried petals were quite similar to those in the fresh or liophylized ones. Almost identical situations were found in petals of flowers from six days before anthesis to the period of fully opened ones, suggesting that the anthocyanin-accumulation in petals reached maximum at a relatively earlier stage of flower-bud-development.

2. On the constitution and accumulation of anthocyanins in the garden-camellia-flowers.

In the fourteen anthocyanin-spots on TLC-plates, the group with the lower-Rf pigments contained cultivars of *C. japonica*, *C. japonica* ssp. *rusticana*, *C. sasanqua*, *C. hiemalis* and *C. vernalis*, while the group with the higher-Rf pigments contained *C. reticulata*. Contrasting to these, *C. wabisuke* contained cultivars with pigments of lower-Rf values as well as with those of higher-Rf ones.

The major pigment in *C. japonica* and *C. japonica* ssp. *rusticana* was spot 1, and the variation-extent in the anthocyanin constitution and accumulation of the former species was far more prominent than that of the latter, whereas the major pigment in *C. sasanqua* and *C. hiemalis* was spot 5, moreover both of them contain spots 2 and 6 of delphinidin-series. Concerning the anthocyanin constitution and accumulation, *C. vernalis* contained cultivars with various variation-extents, *i.e.*, the extent varying from cultivars containing mainly spot 1 to those predominated by spot 5, and this fact substantiated the hybrid origin of this species, occurring between *C. japonica* and *C. sasanqua*.

The major pigments in *C. reticulata* were spots 11 and 13, and a comparatively wide variation-extent was noted, *i.e.*, the extent varying from cultivars containing mainly spot 11 to those predominated by spot 13, in thier accumulations.

Within spot 1 the amounts of cyanidin 3-galactoside detected by HPLC in *C. japonica*, *C. japonica* ssp. *rusticana*, *C. sasanqua* and *C. vernalis* were fixed to be 12, 40, 1 and 7% of the
total anthocyanins, respectively, with the confirmed indication that the occurrence of relatively large amounts of this pigment is specific to *C. japonica* ssp. *rusticana*.

In short, the occurrence-manners of pigments, i.e., lower- and higher-Rf values, highly hydroxylated delphinidin-series and the peculiar cyanidin 3-galactoside in *Camellia* cultivars, and the variations of cultivars based on the amount of these pigments; were differed, respectively, as shown in the above descriptions. Hence the assumption that anthocyanin pigments may aid us in classifying the cultivars, using the pigments as chemical markers, making more positive classification of camellias possible.

As for the modes of pigment-inheritance in the garden hybrids derived from the inter-specific crosses, in the species of *C. japonica, C. sasanqua, C. reticulata* and *C. saluenensis*, a considerable regularity was found. Namely, although the dominance was not complete, in the crosses between the lower- and the higher-Rf groups, the production of higher-Rf pigments was dominant to that of lower-Rf pigments, and in the crosses between the higher-Rf groups, the production of *saluenensis*-specific spots, 10 and 12, was dominant to that of *reticulata*-specific spots, 11 and 13.

3. On the constitution and accumulation of anthocyanins in the wild-forms of the Section Camellia.

Among the species of Chinese origin, the group with higher-Rf pigments contained *C. reticulata, C. saluenensis* and *C. pitardii* and the group with lower-Rf pigments contained *C. semiserrata, C. chekiangoleosa* and *C. hongkongensis*. On the other hand, *C. polyodonta*, together with the main lower-Rf pigments, contained 4% of *saluenensis*-specific higher-Rf pigments.

Among the pigments of higher-Rf values, major anthocyanins were spots 11 and 13 in *C. reticulata* and spots 10 and 12 in *C. saluenensis*. A somewhat different constitution of pigments were shown by two varieties of *C. pitardii*, i.e., var. *pitardii* and var. *yunnanica*. The former contained *saluenensis*-specific spots, 10 and 12, and the latter contained *reticulata*-specific spots, 11 and 13.

Among the pigments of lower-Rf values, major anthocyanins were spot 1 in *C. polyodonta, C. semiserrata* and *C. chekiangoleosa* and spot 5 in *C. hongkongensis*. Especially, *C. chekiangoleosa* contained 100% of spot 1, of the total amounts of anthocyanins, and moreover, this species contained nearly equal amounts of cyanidin 3-galactoside and cyanidin 3-glucoside, within spot 1. *C. semiserrata* contained quite small amount of cyanidin 3-galactoside, within spot 1, and *C. hongkongensis* contained *sasanqua*-specific spots, 2 and 6 of delphinidin-series.

All the species of the *japonica*-groups i.e., *C. japonica, C. japonica* ssp. *rusticana, C. japonica* ssp. *hozanensis* and *C. japonica* f. *macrocarpa*; contained lower-Rf pigments, with major anthocyanin being spot 1. Especially, *C. japonica* ssp. *rusticana* and Formosan *C. japonica* ssp. *hozanensis* contained 100% of spot 1, of the total amounts of anthocyanins, and in addition, these subspecies contained nearly equal amounts of cyanidin 3-galactoside and cyanidin 3-glucoside, within spot 1.

In conclusion, the anthocyanin constitution and accumulation in *Camellia* were revealed to be an effective means for chemical taxonomy, especially in such complicated ones as *C. vernallis, C. wabisuke, C. pitardii*, Formosan *C. japonica* ssp. *hozanensis*, etc.

Moreover, the anthocyanin constitution differed in accordance with the distribution of the species. The species from the localities in and around Yunnan and Szechuan showed anthocyanins chemically more complex than those in other Chinese and Japanese species. This is of some interests, because the centre of the origin of *Camellia* species has been considered.
to lie in south-western China. If this were the case, it would happen that, as the species extended north-eastern wards from the centre of the origin, the anthocyanins were made to be simpler chemically, with the genes governing their production-process changed recessively, as compared with those governing the production of the more complex anthocyanins found in the species occurring near the presumed centre of the origin.

Based on these findings, the species may reasonably be arranged in the following three major phylogenetic sequences, namely: 1) from *C. saluenensis* through *C. pitardii var. yunnanica* to *C. reticulata*, 2) from *C. saluenensis* through *C. pitardii var. pitardii* to *C. polyodonta* and 3) from *C. polyodonta* through *C. semiserrata* and *C. chekiangoleosa* to the groups of *C. japonica*.
<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Total** anthocyanin</th>
<th>Constituent anthocyanins (%)*2</th>
<th>Ga : G*3 within spot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. japonica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christmas Beauty</td>
<td>0.35</td>
<td>100 -</td>
<td>38 : 62</td>
</tr>
<tr>
<td>Nanban-kō</td>
<td>0.11</td>
<td>100 -</td>
<td>29 : 71</td>
</tr>
<tr>
<td>Hinomaru</td>
<td>0.31</td>
<td>96 + 4</td>
<td>10 : 90</td>
</tr>
<tr>
<td>Chosen-tsubaki</td>
<td>0.20</td>
<td>94 - 6</td>
<td>-</td>
</tr>
<tr>
<td>Kumagai</td>
<td>0.35</td>
<td>93 - 3</td>
<td>32 : 68</td>
</tr>
<tr>
<td>Kramer’s Supreme</td>
<td>0.11</td>
<td>92 + 3</td>
<td>27 : 73</td>
</tr>
<tr>
<td>seedling of Matsukasa</td>
<td>-</td>
<td>88 - 4</td>
<td>32 : 68</td>
</tr>
<tr>
<td>Victor Emmanuel</td>
<td>0.18</td>
<td>88 - 12</td>
<td>27 : 73</td>
</tr>
<tr>
<td>Kyonishiki</td>
<td>0.03</td>
<td>88 - 12</td>
<td>15 : 85</td>
</tr>
<tr>
<td>cv. 1</td>
<td>0.35</td>
<td>88 - 7</td>
<td>20 : 80</td>
</tr>
<tr>
<td>Yoshitsukasa</td>
<td>0.15</td>
<td>87 + 6</td>
<td>13 : 87</td>
</tr>
<tr>
<td>Fuiri-karako</td>
<td>0.12</td>
<td>87 - 12</td>
<td>31 : 69</td>
</tr>
<tr>
<td>Beni-arajishi</td>
<td>0.89</td>
<td>85 + 9</td>
<td>42 : 58</td>
</tr>
<tr>
<td>Yuri-tsubaki</td>
<td>0.35</td>
<td>85 - 5</td>
<td>-</td>
</tr>
<tr>
<td>Nishikigasane</td>
<td>0.28</td>
<td>84 + 10</td>
<td>14 : 86</td>
</tr>
<tr>
<td>Higo-kōbai</td>
<td>0.23</td>
<td>84 - 4</td>
<td>-</td>
</tr>
<tr>
<td>Kansai-kokuryu</td>
<td>0.51</td>
<td>83 - 10</td>
<td>16 : 84</td>
</tr>
<tr>
<td>Chogashima</td>
<td>0.34</td>
<td>83 + 9</td>
<td>14 : 86</td>
</tr>
<tr>
<td>Genji Shibori</td>
<td>0.11</td>
<td>81 - 10</td>
<td>21 : 79</td>
</tr>
<tr>
<td>Shintsuakasa</td>
<td>0.08</td>
<td>81 - 19</td>
<td>14 : 86</td>
</tr>
<tr>
<td>Oimatsu</td>
<td>0.23</td>
<td>80 + 15</td>
<td>-</td>
</tr>
<tr>
<td>Unryu-tsubaki</td>
<td>0.26</td>
<td>79 - 12</td>
<td>16 : 84</td>
</tr>
<tr>
<td>Moshio</td>
<td>0.38</td>
<td>79 + 15</td>
<td>10 : 90</td>
</tr>
<tr>
<td>Amaobune</td>
<td>0.51</td>
<td>79 - 10</td>
<td>14 : 86</td>
</tr>
<tr>
<td>Tsurikagarì</td>
<td>0.43</td>
<td>78 - 11</td>
<td>15 : 85</td>
</tr>
<tr>
<td>Yae-hime</td>
<td>0.45</td>
<td>77 + 10</td>
<td>13 : 87</td>
</tr>
<tr>
<td>Yamatonishiki</td>
<td>0.11</td>
<td>77 + 16</td>
<td>10 : 90</td>
</tr>
<tr>
<td>Arahōshi</td>
<td>0.15</td>
<td>76 + 16</td>
<td>-</td>
</tr>
<tr>
<td>Chubu-shikainami</td>
<td>0.28</td>
<td>76 - 24</td>
<td>11 : 89</td>
</tr>
<tr>
<td>Apollo</td>
<td>0.12</td>
<td>76 - 18</td>
<td>7 : 93</td>
</tr>
<tr>
<td>Heart O’Gold</td>
<td>0.28</td>
<td>76 + 13</td>
<td>29 : 71</td>
</tr>
<tr>
<td>Shichihenge-tsubaki</td>
<td>1.08</td>
<td>76 + 10</td>
<td>36 : 64</td>
</tr>
<tr>
<td>Lady Macon</td>
<td>0.05</td>
<td>75 + 25</td>
<td>19 : 81</td>
</tr>
<tr>
<td>Ezonishiki</td>
<td>0.20</td>
<td>75 - 25</td>
<td>12 : 88</td>
</tr>
<tr>
<td>Amagashita</td>
<td>0.23</td>
<td>73 - 10</td>
<td>19 : 81</td>
</tr>
<tr>
<td>C. M. Hovey</td>
<td>0.35</td>
<td>73 - 27</td>
<td>8 : 92</td>
</tr>
<tr>
<td>Kuro-tsubaki</td>
<td>-</td>
<td>72 - 9</td>
<td>18 : 82</td>
</tr>
<tr>
<td>Monjuu</td>
<td>0.45</td>
<td>72 - 17</td>
<td>26 : 74</td>
</tr>
<tr>
<td>Elizabeth Le Bay</td>
<td>0.05</td>
<td>72 - 20</td>
<td>26 : 74</td>
</tr>
<tr>
<td>Hongbaigong</td>
<td>0.26</td>
<td>71 - 15</td>
<td>20 : 80</td>
</tr>
<tr>
<td>Kon-wabitsuke</td>
<td>1.08</td>
<td>71 - 19</td>
<td>7 : 93</td>
</tr>
<tr>
<td>Drift Wood</td>
<td>0.11</td>
<td>70 - 18</td>
<td>20 : 80</td>
</tr>
<tr>
<td>Fukutsuzumi</td>
<td>0.08</td>
<td>70 - 13</td>
<td>26 : 74</td>
</tr>
<tr>
<td>Pink Shapau</td>
<td>0.34</td>
<td>69 - 16</td>
<td>25 : 75</td>
</tr>
<tr>
<td>Amanogawa</td>
<td>0.12</td>
<td>69 - 19</td>
<td>28 : 72</td>
</tr>
<tr>
<td>Cultivars</td>
<td>Total anthocyanin</td>
<td>Constituent anthocyanins (%)</td>
<td>Ga : G within spot</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Iwane-shibori</td>
<td>0.28</td>
<td></td>
<td>17:83</td>
</tr>
<tr>
<td>Hatsueyama</td>
<td>0.05</td>
<td></td>
<td>28:72</td>
</tr>
<tr>
<td>Masayoshi</td>
<td>0.23</td>
<td></td>
<td>22:78</td>
</tr>
<tr>
<td>Kô-botan</td>
<td>0.11</td>
<td></td>
<td>41:59</td>
</tr>
<tr>
<td>Hijirimen</td>
<td>0.35</td>
<td></td>
<td>15:85</td>
</tr>
<tr>
<td>Kayoidori</td>
<td>0.03</td>
<td></td>
<td>10:90</td>
</tr>
<tr>
<td>Genjiguruma</td>
<td>0.18</td>
<td></td>
<td>13:87</td>
</tr>
<tr>
<td>Fukurin-benten</td>
<td>0.12</td>
<td></td>
<td>19:81</td>
</tr>
<tr>
<td>Sazanami</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shojô</td>
<td>0.11</td>
<td></td>
<td>9:91</td>
</tr>
<tr>
<td>Harukagura</td>
<td>0.11</td>
<td></td>
<td>27:73</td>
</tr>
<tr>
<td>Kumasaka</td>
<td>0.08</td>
<td></td>
<td>16:84</td>
</tr>
<tr>
<td>Shusugasane</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akashigata</td>
<td>0.12</td>
<td></td>
<td>38:62</td>
</tr>
<tr>
<td>Kikusarasa</td>
<td>0.03</td>
<td></td>
<td>17:83</td>
</tr>
<tr>
<td>Mikenjaku</td>
<td>0.08</td>
<td></td>
<td>29:71</td>
</tr>
<tr>
<td>Shokkô</td>
<td>0.31</td>
<td></td>
<td>5:95</td>
</tr>
<tr>
<td>Chuba-taiyônishiki</td>
<td>0.08</td>
<td></td>
<td>21:79</td>
</tr>
<tr>
<td>Muramusume</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hikarugenji</td>
<td>0.05</td>
<td></td>
<td>15:85</td>
</tr>
<tr>
<td>Kingyoba-tsubaki</td>
<td>0.03</td>
<td></td>
<td>20:80</td>
</tr>
<tr>
<td>Akinoyama</td>
<td>0.18</td>
<td></td>
<td>11:89</td>
</tr>
<tr>
<td>Rose Dawn</td>
<td>0.15</td>
<td></td>
<td>7:93</td>
</tr>
<tr>
<td>Nimaji</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kujaku-tsubuki</td>
<td>0.43</td>
<td></td>
<td>10:90</td>
</tr>
<tr>
<td>Hibotan</td>
<td>0.18</td>
<td></td>
<td>10:90</td>
</tr>
<tr>
<td>Hirenge</td>
<td>0.12</td>
<td></td>
<td>14:86</td>
</tr>
<tr>
<td>Nina Avery</td>
<td>0.03</td>
<td></td>
<td>25:75</td>
</tr>
<tr>
<td>Drama Girl</td>
<td>0.12</td>
<td></td>
<td>27:73</td>
</tr>
<tr>
<td>Debutante cv. 2</td>
<td>0.03</td>
<td></td>
<td>13:87</td>
</tr>
<tr>
<td>Shikon-tsubaki</td>
<td>0.46</td>
<td></td>
<td>19:81</td>
</tr>
<tr>
<td>Ônijji</td>
<td>0.12</td>
<td></td>
<td>17:83</td>
</tr>
<tr>
<td>Zougongsheng</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higurashi</td>
<td>0.20</td>
<td></td>
<td>12:88</td>
</tr>
<tr>
<td>Shun-shokkô</td>
<td>0.03</td>
<td></td>
<td>12:88</td>
</tr>
<tr>
<td>Kô-otome</td>
<td>0.15</td>
<td></td>
<td>36:62</td>
</tr>
<tr>
<td>Kanyôtai</td>
<td>0.15</td>
<td></td>
<td>17:83</td>
</tr>
<tr>
<td>Guest of Honor</td>
<td>0.08</td>
<td></td>
<td>29:71</td>
</tr>
<tr>
<td>Shisantaibao</td>
<td>0.11</td>
<td></td>
<td>7:93</td>
</tr>
<tr>
<td>Lindsay Naill</td>
<td>0.08</td>
<td></td>
<td>24:76</td>
</tr>
<tr>
<td>Umegaki</td>
<td>0.23</td>
<td></td>
<td>26:74</td>
</tr>
<tr>
<td>Shebosushi</td>
<td>0.03</td>
<td></td>
<td>8:92</td>
</tr>
<tr>
<td>Giulio Nuccio</td>
<td>0.20</td>
<td></td>
<td>10:90</td>
</tr>
</tbody>
</table>
Appendix 1. (Continued)

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Total*1 anthocyanin</th>
<th>Constituent anthocyanins (%)**</th>
<th>Ga : C*** within spot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azuma-shibori cv. 3</td>
<td>0.12 27 15 58 - - - - - - - -</td>
<td>11 : 89</td>
<td></td>
</tr>
<tr>
<td>Daikagura</td>
<td>0.20 27 29 35 - - - - - - - -</td>
<td>9 : 78</td>
<td></td>
</tr>
<tr>
<td>Kariyio</td>
<td>0.11 25 18 57 - - - - - - - -</td>
<td>16 : 84</td>
<td></td>
</tr>
<tr>
<td>Kikuzuki</td>
<td>0.12 23 22 55 - - - - - - - -</td>
<td>22 : 78</td>
<td></td>
</tr>
<tr>
<td>Tiffany</td>
<td>0.05 18 23 59 - - - - - - - -</td>
<td>17 : 83</td>
<td></td>
</tr>
<tr>
<td>C. japonica ssp. rusticana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komatsuhime</td>
<td>0.42 100 - - - - - - - - - -</td>
<td>55 : 45</td>
<td></td>
</tr>
<tr>
<td>Hoshihime</td>
<td>0.20 100 - - - - - - - - - -</td>
<td>48 : 52</td>
<td></td>
</tr>
<tr>
<td>Shiibori-choji</td>
<td>0.26 97 - 3 - - - - - - - -</td>
<td>58 : 42</td>
<td></td>
</tr>
<tr>
<td>Aiaigasa cv. 1</td>
<td>0.31 96 - - - 4 - - - - - -</td>
<td>47 : 53</td>
<td></td>
</tr>
<tr>
<td>Sendai-akatsubaki</td>
<td>0.49 95 - - - 5 - - - - - -</td>
<td>51 : 49</td>
<td></td>
</tr>
<tr>
<td>Iwai-no-sakazuki</td>
<td>0.23 95 - - - 5 - - - - - -</td>
<td>39 : 61</td>
<td></td>
</tr>
<tr>
<td>Ryugu</td>
<td>0.38 95 - - - 5 - - - - - -</td>
<td>54 : 46</td>
<td></td>
</tr>
<tr>
<td>Kasugayama cv. 2</td>
<td>0.26 93 3 1 - 3 - - - - - -</td>
<td>78 : 22</td>
<td></td>
</tr>
<tr>
<td>Sendai-usubeni cv. 3</td>
<td>0.18 93 - 7 - - - - - - - -</td>
<td>66 : 34</td>
<td></td>
</tr>
<tr>
<td>Niigata</td>
<td>0.15 89 - - - 8 - 3 - - - -</td>
<td>47 : 53</td>
<td></td>
</tr>
<tr>
<td>Hana-kanzashi</td>
<td>0.15 88 - 12 - - - 3 - - - -</td>
<td>43 : 57</td>
<td></td>
</tr>
<tr>
<td>Shimasumori</td>
<td>0.15 87 7 6 - - - - - - - -</td>
<td>28 : 72</td>
<td></td>
</tr>
<tr>
<td>Tachiyama</td>
<td>0.95 85 6 9 - - - - - - - -</td>
<td>14 : 86</td>
<td></td>
</tr>
<tr>
<td>Hoshiguruma</td>
<td>0.20 84 8 8 - - - - - - - -</td>
<td>44 : 56</td>
<td></td>
</tr>
<tr>
<td>Otome-tsubaki</td>
<td>0.08 81 - 19 - - - - - - - -</td>
<td>28 : 74</td>
<td></td>
</tr>
<tr>
<td>Sendai-usubeni</td>
<td>0.03 81 - - - 3 - 16 - - - -</td>
<td>43 : 57</td>
<td></td>
</tr>
<tr>
<td>cv. 4</td>
<td>0.12 75 5 7 - - - 13 - + - - -</td>
<td>29 : 71</td>
<td></td>
</tr>
<tr>
<td>Yukikomachi</td>
<td>0.12 73 14 13 - - - - - - - -</td>
<td>14 : 86</td>
<td></td>
</tr>
<tr>
<td>Fukurin-ikkyu</td>
<td>0.08 64 15 21 - - - - - - - -</td>
<td>44 : 56</td>
<td></td>
</tr>
<tr>
<td>C. sasanqua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cv. 1 (Kurume)</td>
<td>0.49 6 8 86 + - - - - - -</td>
<td>+ : 100</td>
<td></td>
</tr>
<tr>
<td>cv. 2 (Kurume)</td>
<td>0.05 6 11 83 + - - - - - -</td>
<td>+ : 100</td>
<td></td>
</tr>
<tr>
<td>Meigetsu</td>
<td>0.08 14 7 79 + - - - - - -</td>
<td>+ : 100</td>
<td></td>
</tr>
<tr>
<td>Shinkokubeni</td>
<td>0.28 8 13 75 4 - - - - - -</td>
<td>+ : 100</td>
<td></td>
</tr>
<tr>
<td>Momoyama</td>
<td>0.08 8 19 73 + - - - - - -</td>
<td>+ : 100</td>
<td></td>
</tr>
<tr>
<td>Horei</td>
<td>0.03 9 18 73 + - - - - - -</td>
<td>0 : 100</td>
<td></td>
</tr>
<tr>
<td>Hikarugenji</td>
<td>0.05 10 19 71 - - - - - -</td>
<td>+ : 100</td>
<td></td>
</tr>
<tr>
<td>Saotome</td>
<td>0.08 8 13 71 8 - - - - - -</td>
<td>13 : 87</td>
<td></td>
</tr>
<tr>
<td>Hitotaimishizuka</td>
<td>0.11 11 18 69 2 - - - - - -</td>
<td>18 : 82</td>
<td></td>
</tr>
<tr>
<td>Azahi-no-umi</td>
<td>0.35 15 10 69 6 - - - - - -</td>
<td>0 : 100</td>
<td></td>
</tr>
<tr>
<td>cv. 3 (Hirado)</td>
<td>0.20 14 14 67 5 - - - - - -</td>
<td>14 : 86</td>
<td></td>
</tr>
<tr>
<td>Goshoguruma</td>
<td>0.05 13 20 67 - - - - - -</td>
<td>+ : 100</td>
<td></td>
</tr>
<tr>
<td>cv. 4 (Hirado)</td>
<td>0.20 12 16 67 5 - - - - - -</td>
<td>+ : 100</td>
<td></td>
</tr>
<tr>
<td>Fukurawasai</td>
<td>0.08 7 21 65 7 - - - - - -</td>
<td>0 : 100</td>
<td></td>
</tr>
<tr>
<td>Sekiyō</td>
<td>0.20 20 7 64 + - - - - - -</td>
<td>+ : 100</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1 (Continued)

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Total anthocyanin</th>
<th>Constituent anthocyanins (%)</th>
<th>Ga : C within spot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyake-no-haru</td>
<td>0.05</td>
<td>13</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>cv. 5 (Hirado)</td>
<td>0.11</td>
<td>19</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Irihi-no-umi</td>
<td>0.26</td>
<td>17</td>
<td>1.1:1.1</td>
</tr>
<tr>
<td>cv. 6 (Hirado)</td>
<td>0.08</td>
<td>13</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Saikai</td>
<td>0.31</td>
<td>18</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>cv. 7 (Kurume)</td>
<td>0.26</td>
<td>7</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>cv. 8 (Kurume)</td>
<td>0.05</td>
<td>12</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>cv. 9 (Kurume)</td>
<td>0.08</td>
<td>13</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Rosy Mist</td>
<td>0.12</td>
<td>19</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Harusamenishiki</td>
<td>0.05</td>
<td>13</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Tenny-no-kaori</td>
<td>0.12</td>
<td>19</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>cv. 10 (Formosa)</td>
<td>0.31</td>
<td>24</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Eikyu-shibori</td>
<td>0.15</td>
<td>14</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Ōmigoro</td>
<td>0.03</td>
<td>11</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Wagijin</td>
<td>0.11</td>
<td>30</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>cv. 11 (Hirado)</td>
<td>0.08</td>
<td>11</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Hinokoromo</td>
<td>0.26</td>
<td>18</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Wakakae</td>
<td>0.11</td>
<td>16</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Negishi-kō</td>
<td>0.03</td>
<td>14</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Hiran</td>
<td>0.20</td>
<td>43</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Shichifukujin</td>
<td>0.12</td>
<td>19</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Hinotsukasa</td>
<td>0.38</td>
<td>64</td>
<td>0.1:0.1</td>
</tr>
<tr>
<td>Iro-mo Ka-mo</td>
<td>0.11</td>
<td>46</td>
<td>0.1:0.1</td>
</tr>
</tbody>
</table>

C. hiemalis

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Total anthocyanin</th>
<th>Constituent anthocyanins (%)</th>
<th>Ga : C within spot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shishigashira</td>
<td>0.15</td>
<td>13</td>
<td>23:77</td>
</tr>
<tr>
<td>Chansonette</td>
<td>0.15</td>
<td>2</td>
<td>+:100</td>
</tr>
<tr>
<td>Showa-no-sakae</td>
<td>0.08</td>
<td>12</td>
<td>17:83</td>
</tr>
<tr>
<td>Hitome</td>
<td>0.23</td>
<td>11</td>
<td>+:100</td>
</tr>
<tr>
<td>Otome</td>
<td>0.08</td>
<td>10</td>
<td>0:100</td>
</tr>
<tr>
<td>Beni-no-tsukasa</td>
<td>0.23</td>
<td>20</td>
<td>+:100</td>
</tr>
<tr>
<td>Dazzlar</td>
<td>0.26</td>
<td>12</td>
<td>+:100</td>
</tr>
<tr>
<td>Tachikan-tsubaki</td>
<td>0.12</td>
<td>36</td>
<td>14:86</td>
</tr>
</tbody>
</table>

C. serralis

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Total anthocyanin</th>
<th>Constituent anthocyanins (%)</th>
<th>Ga : C within spot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uchino-kō</td>
<td>0.20</td>
<td>21</td>
<td>10:90</td>
</tr>
<tr>
<td>Asahi</td>
<td>0.03</td>
<td>27</td>
<td>22:78</td>
</tr>
<tr>
<td>Kōrei</td>
<td>0.42</td>
<td>26</td>
<td>19:81</td>
</tr>
<tr>
<td>Gaisen</td>
<td>0.43</td>
<td>28</td>
<td>+:100</td>
</tr>
<tr>
<td>Ōmigoro</td>
<td>0.12</td>
<td>33</td>
<td>33:67</td>
</tr>
<tr>
<td>Sashihime</td>
<td>0.26</td>
<td>43</td>
<td>21:79</td>
</tr>
<tr>
<td>Hoshihime</td>
<td>0.38</td>
<td>32</td>
<td>9:91</td>
</tr>
<tr>
<td>Beni-suzume</td>
<td>0.12</td>
<td>15</td>
<td>33:67</td>
</tr>
<tr>
<td>Hisatomi</td>
<td>0.15</td>
<td>25</td>
<td>20:80</td>
</tr>
<tr>
<td>Egao</td>
<td>0.03</td>
<td>31</td>
<td>23:77</td>
</tr>
</tbody>
</table>
Appendix 1. (Continued)

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Total*anthocyanin</th>
<th>Constituent anthocyanins (%)**</th>
<th>Ga : C*** within sp.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3 & 4</td>
<td>5</td>
</tr>
<tr>
<td>Egao-kurenai</td>
<td>0.18</td>
<td>42</td>
<td>8</td>
</tr>
<tr>
<td>Kotohira-kō</td>
<td>0.35</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Shokkōnishiki</td>
<td>0.34</td>
<td>46</td>
<td>5</td>
</tr>
<tr>
<td>Kokinran</td>
<td>0.03</td>
<td>35</td>
<td>21</td>
</tr>
<tr>
<td>Bōsyo</td>
<td>0.38</td>
<td>40</td>
<td>14</td>
</tr>
<tr>
<td>Sandanka</td>
<td>0.38</td>
<td>48</td>
<td>13</td>
</tr>
<tr>
<td>Ryukō</td>
<td>0.31</td>
<td>55</td>
<td>5</td>
</tr>
<tr>
<td>Yūgen</td>
<td>0.51</td>
<td>56</td>
<td>9</td>
</tr>
<tr>
<td>Sayohime</td>
<td>0.20</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>Hoshihiryu</td>
<td>0.31</td>
<td>60</td>
<td>11</td>
</tr>
<tr>
<td>Karagoromo</td>
<td>0.28</td>
<td>69</td>
<td>8</td>
</tr>
<tr>
<td>Kamasukura-shibori</td>
<td>0.26</td>
<td>64</td>
<td>16</td>
</tr>
</tbody>
</table>

C. reticulata

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Total*anthocyanin</th>
<th>Constituent anthocyanins (%)**</th>
<th>Ga : C*** within sp.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moutancha</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mouchang</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Early Peony</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Butterfly Wings</td>
<td>0.08</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>open-pollinated (1)</td>
<td>0.12</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Three Dreams</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lion Head</td>
<td>0.31</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Arch of Triumph</td>
<td>0.31</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Tom Durrant</td>
<td>0.05</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>Janet Clark</td>
<td>0.38</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Wild Silk</td>
<td>0.05</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>open-pollinated (2)</td>
<td>0.12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Buddha</td>
<td>0.23</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Ellie Robensohn</td>
<td>0.15</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Reti, Leaf S. Pink</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ming's Temple</td>
<td>0.12</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Crimson King</td>
<td>0.31</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Kohinor</td>
<td>0.15</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Captain Rawes</td>
<td>0.20</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Red China</td>
<td>-</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>Noble Pearl</td>
<td>0.31</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Eden Roc</td>
<td>0.08</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Crimson Robe</td>
<td>0.31</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>William Hertrich</td>
<td>0.46</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Confucius</td>
<td>0.05</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Chang's Temple</td>
<td>0.54</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Wild Form</td>
<td>0.11</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Red Emperor</td>
<td>0.31</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>open-pollinated (3)</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cornelian</td>
<td>0.20</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Appendix 1. (Continued)

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Total*¹ anthocyanin</th>
<th>Constituent anthocyanins (%)*²</th>
<th>Ga: G*³ within spot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 3&4 5 2&6 7-9 10 11 12 13 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pagoda</td>
<td>0.46</td>
<td>6 — — — 17 48 7 22 — 14 86</td>
<td></td>
</tr>
<tr>
<td>Lila Naff</td>
<td>0.03</td>
<td>33 — — — 10 1 30 12 — 46 54</td>
<td></td>
</tr>
<tr>
<td>Chrysanthemum Petal</td>
<td>0.05</td>
<td>3 — — — 5 86 3 3 — 45 55</td>
<td></td>
</tr>
<tr>
<td>Samantha</td>
<td>—</td>
<td>41 — — — — — 59 — — 45 55</td>
<td></td>
</tr>
<tr>
<td>Shot Silk</td>
<td>0.11</td>
<td>1 15 14 — — 10 8 52 — 29 71</td>
<td></td>
</tr>
<tr>
<td>C. saluenensis</td>
<td>0.10</td>
<td>76 16 8 — — — — — — 17 83</td>
<td></td>
</tr>
<tr>
<td>Kocho-wabisuke</td>
<td>0.07</td>
<td>34 23 43 — — — — — — 29 71</td>
<td></td>
</tr>
<tr>
<td>Sukiya</td>
<td>0.04</td>
<td>— — — — — — 29 71 — — — — —</td>
<td></td>
</tr>
<tr>
<td>Showa-wabisuke</td>
<td>0.04</td>
<td>8 — — — — 30 62 — — — 31 69</td>
<td></td>
</tr>
<tr>
<td>Tarókaiji</td>
<td>0.04</td>
<td>11 — — — 39 50 — — — 33 67</td>
<td></td>
</tr>
<tr>
<td>Seiôbo</td>
<td>0.03</td>
<td>26 20 31 — 3 6 14 — 17 83</td>
<td></td>
</tr>
<tr>
<td>Hina-wabisuke</td>
<td>0.10</td>
<td>15 76 1 7 1 14 45 11 — 21 79</td>
<td></td>
</tr>
<tr>
<td>Shibenashi-wabisuke</td>
<td>0.12</td>
<td>9 9 — — 14 12 45 11 — 21 79</td>
<td></td>
</tr>
<tr>
<td>Kanzakia-wabisuke</td>
<td>0.04</td>
<td>62 11 — — — 19 8 — 15 85</td>
<td></td>
</tr>
</tbody>
</table>

*¹ mg of anthocyanins / 100 mg of petal dry-weight.
*² Numbers used correspond to the spot-numbers represented in Fig. 4.
*³ Ga: cyanidin 3-galactoside, G: cyanidin 3-glucoside.

Appendix 2. Constitution of anthocyanins in the camellia cultivars of hybrid origin

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Total*¹ anthocyanin</th>
<th>Constituent anthocyanins (%)*²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 3&4 5 2&6 7-9 10 11 12 13 14</td>
<td></td>
</tr>
<tr>
<td>C. saluenensis × japonica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November Pink</td>
<td>0.29</td>
<td>+ — + — — — — — — 100 — —</td>
</tr>
<tr>
<td>synthetic (1)</td>
<td>0.23</td>
<td>— — + — — — — 14 + 86 — —</td>
</tr>
<tr>
<td>Debbie</td>
<td>0.15</td>
<td>+ — — — — — — 20 + 70 — —</td>
</tr>
<tr>
<td>Daintiness</td>
<td>0.40</td>
<td>24 8 — — — 7 — 61 — — —</td>
</tr>
<tr>
<td>Galaxie</td>
<td>0.05</td>
<td>5 9 9 — — — 22 — 55 — —</td>
</tr>
<tr>
<td>E. G. Waterhouse</td>
<td>0.05</td>
<td>12 — 22 — — 11 + 55 — — —</td>
</tr>
<tr>
<td>Lady Gowrie</td>
<td>0.11</td>
<td>12 7 — — — 29 — 52 — — —</td>
</tr>
<tr>
<td>Mary F. Taylor</td>
<td>0.03</td>
<td>19 5 — — — 24 — 52 — — —</td>
</tr>
<tr>
<td>Lady Cutler</td>
<td>0.52</td>
<td>24 6 9 — — — 12 + 49 — —</td>
</tr>
<tr>
<td>Donnation</td>
<td>0.08</td>
<td>3 6 — — — 44 — 47 — — —</td>
</tr>
<tr>
<td>Taylor's Perfection</td>
<td>0.09</td>
<td>38 — — — — 18 + 42 — — —</td>
</tr>
<tr>
<td>Asahi</td>
<td>0.05</td>
<td>16 11 14 — — — 17 + 42 — —</td>
</tr>
<tr>
<td>Anticipation</td>
<td>0.05</td>
<td>23 17 — — — 23 + 37 — — —</td>
</tr>
<tr>
<td>synthetic (2)</td>
<td>0.23</td>
<td>12 14 37 — — — — — 37 — —</td>
</tr>
<tr>
<td>Bowen Briyant</td>
<td>0.08</td>
<td>12 18 — — — 34 — 36 — — —</td>
</tr>
<tr>
<td>Brigadoon</td>
<td>0.11</td>
<td>16 6 — — — 45 + 35 — — —</td>
</tr>
<tr>
<td>J.C. Williams</td>
<td>0.11</td>
<td>28 28 — — — 13 — 31 — — —</td>
</tr>
<tr>
<td>Elegant Beauty</td>
<td>0.23</td>
<td>47 3 — — — 21 — 21 — — —</td>
</tr>
<tr>
<td>Margaret Waterhouse</td>
<td>0.03</td>
<td>15 41 — — — 26 + 18 — — —</td>
</tr>
<tr>
<td>Water Lily</td>
<td>0.05</td>
<td>54 — 7 — — 22 + 17 — — —</td>
</tr>
<tr>
<td>synthetic (3)</td>
<td>0.09</td>
<td>45 — — — — 55 + — — — —</td>
</tr>
<tr>
<td>C. reticulata × japonica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink Sparkle</td>
<td>0.20</td>
<td>— — — — — — 39 — 61 — —</td>
</tr>
<tr>
<td>Descanso Mist</td>
<td>0.15</td>
<td>5 — — — — — 34 — 61 — —</td>
</tr>
</tbody>
</table>
Appendix 2. (Continued)

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Total(^*) anthocyanin</th>
<th>Constituent anthocyanins (%)(^)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3&4</td>
</tr>
<tr>
<td>John Taylor</td>
<td>0.38</td>
<td>1</td>
</tr>
<tr>
<td>Howard Asper</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>Bernadette Karsten</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>Arbutus Gum</td>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>Valentine Day</td>
<td>0.31</td>
<td>15</td>
</tr>
<tr>
<td>Otto Hopfer</td>
<td>0.23</td>
<td>18</td>
</tr>
<tr>
<td>Miss Tulare</td>
<td>0.85</td>
<td>26</td>
</tr>
<tr>
<td>Forty Vine</td>
<td>0.54</td>
<td>22</td>
</tr>
<tr>
<td>Milo Rowell</td>
<td>0.18</td>
<td>21</td>
</tr>
<tr>
<td>synthetic (1)</td>
<td>0.66</td>
<td>41</td>
</tr>
<tr>
<td>C. japonica × reticulata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>synthetic (1)</td>
<td>0.31</td>
<td>-</td>
</tr>
<tr>
<td>Dr. C.R. Parks</td>
<td>0.45</td>
<td>5</td>
</tr>
<tr>
<td>Fire Chief</td>
<td>0.62</td>
<td>26</td>
</tr>
<tr>
<td>Royalty</td>
<td>0.46</td>
<td>24</td>
</tr>
<tr>
<td>synthetic (2)</td>
<td>0.26</td>
<td>6</td>
</tr>
<tr>
<td>synthetic (3)</td>
<td>0.45</td>
<td>53</td>
</tr>
<tr>
<td>Diamond Head</td>
<td>0.28</td>
<td>88</td>
</tr>
<tr>
<td>C. sasanqua × reticulata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show Girl</td>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>synthetic (1)</td>
<td>0.97</td>
<td>6</td>
</tr>
<tr>
<td>synthetic (2)</td>
<td>0.42</td>
<td>53</td>
</tr>
<tr>
<td>synthetic (3)</td>
<td>0.28</td>
<td>10</td>
</tr>
<tr>
<td>Flower Girl</td>
<td>0.08</td>
<td>11</td>
</tr>
<tr>
<td>synthetic (4)</td>
<td>0.37</td>
<td>9</td>
</tr>
<tr>
<td>Dream Girl</td>
<td>0.08</td>
<td>23</td>
</tr>
<tr>
<td>Felice Harris</td>
<td>0.03</td>
<td>+</td>
</tr>
<tr>
<td>C. saluenensis X reticulata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>synthetic (1)</td>
<td>0.46</td>
<td>18</td>
</tr>
<tr>
<td>Phyl Doak</td>
<td>0.05</td>
<td>3</td>
</tr>
<tr>
<td>Salutation</td>
<td>0.03</td>
<td>9</td>
</tr>
<tr>
<td>Brian</td>
<td>0.12</td>
<td>+</td>
</tr>
<tr>
<td>Dr. Louis Pollizzi</td>
<td>0.05</td>
<td>7</td>
</tr>
<tr>
<td>Barbara Clark</td>
<td>0.08</td>
<td>10</td>
</tr>
<tr>
<td>Valley Knudsen</td>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>Francie L.</td>
<td>0.68</td>
<td>18</td>
</tr>
</tbody>
</table>

\(^*\) mg of anthocyanins / 100 mg of petal dry-weight.

\(^*\)* Numbers used correspond to the spot-numbers represented in Fig. 4.
Constitution of Anthocyanins in the Wild Forms of Section Camellia of Chinese Origin

<table>
<thead>
<tr>
<th>Species</th>
<th>Total Anthocyanin (mg/100 mg Petal Dry Weight)</th>
<th>Constituent Anthocyanins (%)</th>
<th>Ga : G<sup>3</sup> within Spot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. saluenensis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>0.05</td>
<td>29 + 71 + 34 + 40 + 40</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>0.12</td>
<td>8 + 8 + 8 + 8 + 8</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>0.05</td>
<td>16 + 16 + 16 + 16 + 16</td>
<td></td>
</tr>
<tr>
<td>C. reticulata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arch of Triumph</td>
<td>0.31</td>
<td>4 + 20 + 5 + 71 + 71</td>
<td></td>
</tr>
<tr>
<td>Tom Durrant</td>
<td>0.05</td>
<td>1 + 29 + 1 + 69 + 69</td>
<td></td>
</tr>
<tr>
<td>Wild Form</td>
<td>0.11</td>
<td>2 + 57 + 29 + 57 + 57</td>
<td></td>
</tr>
<tr>
<td>C. pitardii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. pitardii</td>
<td>0.02</td>
<td>33 + 67 + 67 + 67 + 67</td>
<td></td>
</tr>
<tr>
<td>var. yunnanica</td>
<td>0.07</td>
<td>3 + 25 + 5 + 25 + 25</td>
<td></td>
</tr>
<tr>
<td>C. polyodonata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>61 + 10 + 19 + 10 + 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>60 + 9 + 23 + 8 + 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>59 + 11 + 24 + 6 + 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>29 + 14 + 12 + 12 + 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>73 + 11 + 16 + 16 + 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>61 + 20 + 19 + 19 + 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>56 + 27 + 17 + 17 + 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>54 + 27 + 19 + 19 + 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>51 + 24 + 25 + 25 + 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. semiserrata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>85 + 2 + 13 + 13 + 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>83 + 4 + 13 + 13 + 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>80 + 4 + 16 + 16 + 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>79 + 4 + 17 + 17 + 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>77 + 6 + 17 + 17 + 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>68 + 7 + 25 + 25 + 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>68 + 8 + 24 + 24 + 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>62 + 8 + 30 + 30 + 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>61 + 1 + 38 + 38 + 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>60 + 7 + 33 + 33 + 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>55 + 14 + 31 + 31 + 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. chekiangoleosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>100</td>
<td>48 : 52</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>100</td>
<td>23 : 77</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>100</td>
<td>36 : 87</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>97 + 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>90 + 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. hongkongensis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>16 + 13 + 66 + 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>9 + 25 + 60 + 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>8 + 25 + 58 + 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>13 + 20 + 55 + 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>24 + 18 + 39 + 19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*¹ mg of anthocyanins / 100 mg of petal dry weight.

*² Numbers used correspond to the spot-numbers represented in Fig. 4.

*³ Ga : cyanidin 3-galactoside, G : cyanidin 3-glucoside.