Microbial Community Analysis of the Phytosphere Using Culture-Independent Methodologies

ASAMI SAITO¹, SEISHI IKEDA¹,², HIROSHI EZURA², and KIWAMU MINAMISAWA¹

¹ Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
² Gene Research Center, University of Tsukuba, 1–1–1 Tennoudai, Tsukuba, Ibaraki 305–8572, Japan

(Received March 9, 2007—Accepted March 27, 2007)

The phytosphere is an attractive habitat for microorganisms due to an abundance of nutrients and relative environmental stability. The microorganisms that occupy this habitat assist in the uptake of nutrients from soils and can exert considerable influence upon the overall health of the plant. Recent technical advances in environmental microbiology have enabled the tracing and assessment of these microorganisms using rapid and simple molecular techniques without any culture-dependent bias. We herein review the current status of these modern molecular techniques in the study of plant-associated microbes, and summarize the issues relevant to the phytosphere from the aspect of both basic and applied science.

Key words: Community analysis, microbial diversity, plant-microbe interaction, phytosphere

Introduction

The phytosphere is a most attractive habitat for microorganisms due to the availability of many nutrients and its environmental stability. Conceptually, this unique environment consists of three main habitats for plant-associated microbes: the phytosphere, the endosphere and the rhizosphere. Each of these three habitats provides a considerably diverse physical, chemical, and biological environment, and as a consequence can support a wide range of microbial groups. The microorganisms in these habitats assist plants in the uptake of several vital nutrients from the soil, such as phosphorous, potassium and nitrogen⁵,¹³,¹⁰,¹⁰,¹⁰, and some of these organisms can exert considerable influence upon the overall health of the host plant⁶,¹⁰,¹⁰,¹⁰,¹⁰,¹⁰. Conventional culture-dependent methodologies have provided useful information for evaluating microbial diversity in various environments including the phytosphere. However, these conventional methods are limited by strong inherent biases caused by the medium selected and the culture conditions. Moreover, a significant disadvantage of these techniques is the inability to culture most of the microbes in nature¹⁰. In contrast, recent technical advances in environmental microbiology have enabled the evaluation of microbial diversity using rapid, simple, and less biased culture-independent molecular techniques⁶,¹⁰. Culture-independent methodologies have now revealed that the majority of plant-associated microbes have not yet been cultured in the laboratory²,⁵,¹⁰,¹⁰. These studies have thus provided vital clues regarding the abundance and spatial distribution of microbial groups in the phytosphere. However, the relationships between plants and phytosphere microbes are still largely unknown as the phytosphere contains a broad spectrum of microbes in terms of their degree of interaction with the host plant. These range from neutral microorganisms

* Corresponding author. E-mail address: sikeda@nbrc.nite.go.jp; Tel.: +81–438–20–5764; Fax: +81–438–52–2314.
† Present address: NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2–5–8 Kazusakamata, Kisarazu, Chiba 292–0818, Japan.
with no obvious effects upon the host plant to pathogens and mutualistic symbionts with deleterious and beneficial effects, respectively.

The use of currently available molecular techniques will clearly facilitate studies of plant-associated microbiology in both basic and applied research areas. However, these molecular techniques also have several limitations in terms of their application to microbial community analyses. In the present review, we first discuss technical issues in the application of culture-independent methodologies to the study of plant-associated microbes mainly focusing on bacteria and fungi. These issues include sampling, DNA extraction, PCR amplification, and DNA fingerprinting for a microbial community analysis of the phytosphere. Subsequently, we summarize the current status of the application of microbial community analyses in the fields of plant-associated microbiology.

**Sampling of phytosphere materials**

The microbial habitats present in the phytosphere comprise diverse physical, chemical, and biological environments, and these differences require the use of a variety of sampling methods, depending on the target microbial community.

(1) **Phyllosphere**

The phyllosphere is defined as a microbial habitat mainly associated with the surface of the leaf. Prior to sampling of the phyllosphere, it must be considered that the composition of the microbial communities therein can be influenced by several factors including plant growth stage, leaf aging, pathogen infections, local temperature and humidity, and the accidental presence of transient saprophytes. Thus, the phyllosphere is a relatively variable and harsh environment compared to the endosphere and rhizosphere.

Two sampling methods should be considered when evaluating microbial communities in the phyllosphere. The first of these involves the extraction of microbial cells from the surfaces of leaves, either by simply washing tissue with a specific buffer or in combination with sonication. This method provides relatively pure environmental DNA in terms of both chemical and biological qualities for microbial community analyses. This is due to lower levels of contamination from plant debris during the extraction. This technique can also isolate high molecular weight DNA suitable for the construction of a large insert library such as a Bacterial Artificial Chromosome (BAC) library, when used in combination with chemical and enzymatic cell lysis procedures. It must be considered, however, that the efficiency with which cells are recovered from the surfaces of plant tissues may depend on factors such as plant/tissue type, the age of the tissue, and differences in the microbial groups present. An example of this has been shown in analyses of epiphytic microbes present on leaves and seeds, which are considerably affected by the large variability among samples. Dent et al. have previously employed a culture enrichment method involving seed imbibition for 16 hours, followed by tissue fractionation prior to DNA extraction. However, this procedure should be avoided when evaluating microbial diversity, because it can change the ratio of individual species in a population, particularly in the case of bacteria.

The second method involves the direct use of plant tissues for extracting DNA by bead-beating or the use of a mortar and pestle. In this case, samples contain both epiphytic communities (a microcosm in the phylloplane or spermosphere) and endophytic communities (the endophyllosphere or endospersphere). This procedure is simple and faster than the first method. However, there is likely to be contamination by excess plant DNA which could affect subsequent molecular analyses by PCR. Although the appropri-
ate choice of primers and reaction parameters could circum-
vent or minimize these potential biases, the amount of 
microbial biomass in the phyllosphere or in seeds is gener-
ally extremely small relative to the total plant material. Con-
sequently, the analysis of communities in these tissues is 
often strongly biased by the presence of plant DNA and 
may in some cases be impossible to conduct. The sam-
pling procedures for the phyllosphere have been success-
fully applied to the culture-independent analysis of the 
microbial diversity in seeds.

(2) Endosphere

The endosphere is defined as the microbial habitat inside 
of plant tissues. The sampling methods currently employed 
for analyzing the endosphere can also be divided into two 
main types. The first of these employs a procedure for steril-
izing the surface of stem tissues using chemical reagents 
and/or flaming in order to eliminate contamination from 
epiphytic microbial DNA. This approach has been widely 
used for the isolation of endophytes (microbes inhabiting the endosphere), as well as for analyzing microbial communities in the endosphere. The surface ster-
ility of tissues is generally assessed by placing the sterile 
tissues on appropriate growth medium. However, 
although this procedure is effective in eliminating potential contaminants during the isolation of endophytes based upon 
conventional culture methods, it may be insufficient to 
definitively establish the absence of microbial DNA derived 
from the dead cells of epiphytes (microbes inhabiting the 
phyllosphere on the surface of plant tissue).

Discrepancies between the results of community analyses 
of the endosphere using culturable and non-culturable meth-
ods may be partially due to the persistence of bacterial DNA 
on dead cells from the plant surface. Hence, some reports 
have proposed the aseptic peeling of the surfaces of the 
plant tissues prior to DNA extraction. However, as 
reported by Reiter and Sessitsch, aseptic peeling is 
impractical for some plant materials. In this case, the anal-
ysis of bacterial communities using cultivation-independent methods should be defined as a plant-associated community 
analysis that includes both epiphytes and endophytes.

The second method for analyzing communities of the 
endosphere utilizes a procedure for extracting bacterial cells 
from the insides of plant tissues. This comprises a 
mechanical disruption of the bacterial cells and has been 
shown to be effective in minimizing contamination by plant 
DNA prior to DNA isolation. Although this method is 
more laborious than the first, it facilitates a less biased anal-
ysis of endophytic microbial diversity.

(3) Rhizosphere

The rhizosphere was initially defined as the soil environ-
ment directly under the influence of the living roots of the 
host plant, but more recently the term has come to include 
both roots (endorhizosphere and rhizoplane) and root-asso-
ciated soil (ectorrhizosphere or rhizosphere soil) 
environments. Although the effects of the rhizosphere on 
the diversity of soil microbes can usually be observed by 
community analyses (Fig. 1), a precise physical definition of 
 rhizosphere soils is extremely difficult as the degree of 
 influence by the roots on neighboring soil environments can 
be affected by several factors including plant species, plant 
aging, and soil properties. For practical purposes, two sampling methods are usually employed when analyzing the communities of the rhizosphere. The first consists of the recovery of adherent soil by agitation.

\[ \text{Fig. 1. RISA Profiles of the bacterial communities in maize rhizo-
sphere. M, molecular size markers; lane B and R indicate bulk and
rhizosphere soil samples, respectively. Triplicate results for
each sample are shown. The leftmost numbers indicate marker
fragment lengths. Fewer amplicons of increased intensity in the
rhizosphere soil samples are considered to indicate rhizosphere
effects.} \]
(shaking) of roots that have been decomposed carefully from the ground, either in air or water\textsuperscript{196,211,223}. In the case of a bacterial community analysis, the resulting rhizosphere soil fraction can then be subjected to cell extraction prior to DNA preparation.

The advantage of this method is that it can minimize contamination by plant tissues. However, the quality and quantity of the recovered rhizosphere soils can also be greatly affected by the handling procedures and by other factors such as the properties of both the soil and root systems. In addition, some researchers may use procedures for extracting bacterial cells from rhizosphere soils prior to DNA extraction that have various modifications such as bead shaking\textsuperscript{271} and sonication\textsuperscript{272}, making it difficult to directly compare the results. Another concern with this method is that excess amounts of bulk (non-rhizosphere) soil could be carried over into the rhizosphere fractions and thereby mask the impact of the rhizosphere upon the soil microbial community structures.

A second established method for sampling rhizosphere soil is the direct use of root systems with tightly adherent soil for DNA extraction, without the separation of plant tissues. This procedure recovers microbial DNA from the rhizoplane region and retains less bulk soil compared with the first method. As a result, the microbial DNA that is sampled could be expected to better reflect the microbial diversity in the rhizosphere. However, there are also some potential problems with this procedure. First, there may be contamination by excess plant DNA, in which case the appropriate choice of PCR primers and careful technique will be needed to minimize any potential bias. Second, several root tips are usually collected for DNA extraction, since it is practically impossible to extract microbial DNA directly from the entire root systems of most field crops. This may also bias the results due to the presence of a shift in the microbial community structures from the root to the basal area within the same root system\textsuperscript{110}. Third, considerable spatial variability in the vertical distribution of soil microorganisms exists due to the presence of a surface gradient for several environmental factors, including oxygen availability and various nutrients. In order to control for these variations in a given sampling site, it is advisable that multiple samples be collected rather than the individual sample volume be increased.

**DNA extraction**

To date, several reports have described effective ways to extract nucleic acid from the phytosphere. However, the recovery of DNA/RNA from the phytosphere has yet to become routine, and still requires refinement of the extraction and purification conditions due to the extreme diversity of the physical, chemical, and biological properties of plant materials. It is also well recognized that the methods employed for extracting DNA or RNA can themselves bias the results of microbial community analyses in terms of both qualitative and quantitative interpretations of data\textsuperscript{269}. Moreover, whereas RNA-based examinations of microbial communities may provide a better indication of the naturally occurring profiles, the changes in expression levels of RNA may be too sensitive to environmental stress, such as that during the extraction process, to obtain reliable data and appropriate interpretation of the results.

In addition, RNA molecules are extremely labile both in vitro and in vivo, and therefore may not be an appropriate marker for evaluating certain environmental impacts. Consequently, soil DNA has been analyzed in the most recently reported studies of microbial communities in the phytosphere due to a lack of reliable methodologies for RNA extraction. We therefore mainly focus on the relevant considerations when extracting DNA from the phytosphere in this review. The details of some of the DNA extraction procedures that can be used for recalcitrant environmental samples, such as rhizosphere soils, are referred to our recent review\textsuperscript{271}.

The extraction of DNA usually involves three steps; cell lysis, extraction of nucleic acids, and subsequent purification steps. For the efficient lysis of microbial cells, bead-beating is often employed as the initial step of the extraction procedure. However, subsequent extraction/purification steps have tended to vary among different laboratories. Hence, until recently no established DNA extraction method had been reported for analyzing the communities of the phyllosphere and seeds. For analysis of the endosphere, bead-beating treatments of ground tissue have been conducted, followed by the standard phenol-chloroform extraction and/or CTAB extraction. Importantly however, these extraction/purification procedures were originally developed for extracting plant DNA, and were not actually intended for use with microbial DNA. Hence, these methods may not be adequate for the efficient extraction of DNA from microbial cells in the phytosphere.

We have shown in our recent study that a soil DNA extraction method could be adapted for the simple and rapid preparation of environmental microbial DNA directly from diverse biological materials, including plants and related agronomic products\textsuperscript{40}. More recently, a soil DNA extraction method has been employed in several studies for ana-
Table 1. The influence of the extraction method on the quality of plant-associated DNA

<table>
<thead>
<tr>
<th>Sample</th>
<th>OD_{260}/OD_{230}</th>
<th>OD_{260}/OD_{280}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soil kit</td>
<td>Plant kit</td>
</tr>
<tr>
<td>Leaf</td>
<td>0.9±0.7</td>
<td>0.02±0.002</td>
</tr>
<tr>
<td>Stem</td>
<td>0.6±0.4</td>
<td>0.02±0.005</td>
</tr>
<tr>
<td>Root</td>
<td>0.6±0.3</td>
<td>0.02±0.0003</td>
</tr>
</tbody>
</table>

* Tissues were subjected to bead-beating in a DNA extraction buffer prior to the extraction.
* The index for polysaccharide contamination.
* The index for protein contamination.
* FastDNA SPIN Kit for soil. * FastDNA SPIN Kit. * Mean±S.D.

Fig. 2. RISA Profiles of the bacterial communities in the soybean phytosphere. Lane M, molecular size markers; lane S and P indicate DNA samples prepared from each tissue using a soil DNA extraction kit and a plant DNA extraction kit, respectively. Triplicate results for leaf, stem and root tissues are shown. The leftmost numbers indicate marker fragment lengths. The influences of the DNA extraction methods on the results of the microbial community analysis are indicated by the differences in the number and intensity of the DNA bands between the S and P samples.

PCR amplification

PCR amplification of ribosomal RNA regions has been extensively used to study microbial diversity as this methodology takes advantage of the accumulation of such sequences in the public databases\(^1\). In general, both small and large subunit rRNA genes and their intergenic spacer regions are utilized for primer design in microbial diversity studies as they are present in all organisms (Table 2). In most of the current reports of microbial communities, DNA fingerprinting techniques have been widely employed in combination with PCR amplification of ribosomal RNA regions\(^2\). However, it has been estimated that microbial community analyses that employ culture-independent methodologies can detect only 1–2% of the total microbe populations in a complex environmental sample such as soil\(^3\). This is mainly due to the low resolution power of currently available fingerprinting techniques against the diversity of microbial communities in nature\(^4\).

In cases where certain microbes are not easily detectable by the use of standard universal primer sets, taxon-specific primers have been shown to be sometimes effective (Table 2)\(^5\). In the phytosphere, several microbial groups, such as *Burkholderia*, *Pseudomonas*, and Actinomycetes, are known to be important community members, and specific
<table>
<thead>
<tr>
<th>Community or Organism</th>
<th>Target region</th>
<th>Method</th>
<th>Primer (Forward/Reverse)&lt;sup&gt;a&lt;/sup&gt;</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Seed</strong>&lt;sup&gt;b&lt;/sup&gt;</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>341F-GC/534R and Anti-chloroF/534R, 243F1492r</td>
<td>15)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>18S rRNA</td>
<td>DGGE</td>
<td>NS1/NS8 and Eukaryote specific primers</td>
<td>15)</td>
</tr>
<tr>
<td>Fungi</td>
<td>ITS</td>
<td>RISA</td>
<td>1406F3126T</td>
<td>43)</td>
</tr>
<tr>
<td><strong>Phyllosphere</strong></td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>F341/R534</td>
<td>81)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>968-1401</td>
<td>38)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>primer1/primer2</td>
<td>50)</td>
</tr>
<tr>
<td>Bacterioplankton</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>PRBA338f/PRUN518r</td>
<td>117)</td>
</tr>
<tr>
<td><strong>Endosphere</strong></td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>F341/R534</td>
<td>81)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>F968-GC/R1378</td>
<td>2)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>238F/P518r</td>
<td>97)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>T-RFLP</td>
<td>243F1492r</td>
<td>10)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>T-RFLP</td>
<td>799F1520R</td>
<td>87)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>T-RFLP</td>
<td>796fPH</td>
<td>41)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>T-RFLP</td>
<td>8f5926r</td>
<td>89)</td>
</tr>
<tr>
<td><strong>Rhzosphere</strong></td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>F341/R534</td>
<td>81)</td>
</tr>
<tr>
<td>Archaea</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>A46f/A1117r and A340f-GC/A533</td>
<td>105)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>F341-GC/R518</td>
<td>19)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>F984-GC/R1378</td>
<td>37)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>PRBA338f/PRUN518r</td>
<td>116)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>T-RFLP</td>
<td>27 Forward/1525 Reverse</td>
<td>52)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>T-RFLP</td>
<td>8-27F/1507-1492r</td>
<td>20)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>ITS</td>
<td>RISA</td>
<td>1405F23R</td>
<td>3)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>ITS</td>
<td>RISA</td>
<td>ITSf/ITSRheub</td>
<td>45)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>SSCP</td>
<td>133F36F/248R5P</td>
<td>102)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>SSCP</td>
<td>Com1/Com2-Ph</td>
<td>96)</td>
</tr>
<tr>
<td><strong>Inte-bound</strong></td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>F203c/R1494 and F984Gc/R1378</td>
<td>36)</td>
</tr>
<tr>
<td>Archaea</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>P388/R518</td>
<td>39)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>C319/907R and 341F/Gc/907R</td>
<td>32)</td>
</tr>
<tr>
<td>Burkholderia</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>Burk3-Gc/BurkR</td>
<td>93)</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>F243/R1494 and F984Gc/R1378</td>
<td>36)</td>
</tr>
<tr>
<td>Actinomycetes</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>F243/R513-GC</td>
<td>37)</td>
</tr>
<tr>
<td>Methylophilic</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>142F333R</td>
<td>23)</td>
</tr>
<tr>
<td>Methylophilic</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>197F333R</td>
<td>23)</td>
</tr>
<tr>
<td>Pseudonanodes</td>
<td>16S rRNA</td>
<td>T-RFLP</td>
<td>PLA-40F/1492R</td>
<td>16)</td>
</tr>
<tr>
<td>Streptomyces</td>
<td>16S rRNA</td>
<td>DGGE</td>
<td>F311Pps/1459Ps</td>
<td>76)</td>
</tr>
<tr>
<td>Eukaryote</td>
<td>18S rRNA</td>
<td>DGGE</td>
<td>StrepB/Streph and E341F/Gc/534r</td>
<td>105)</td>
</tr>
<tr>
<td>Fungi</td>
<td>18S rRNA</td>
<td>DGGE</td>
<td>NS1-GC/NS2</td>
<td>76)</td>
</tr>
<tr>
<td>Fungi</td>
<td>18S rRNA</td>
<td>DGGE</td>
<td>NS0/EF3 and NS1/FR1-GC</td>
<td>12)</td>
</tr>
<tr>
<td>Fungi</td>
<td>18S rRNA</td>
<td>DGGE</td>
<td>NS1/NS2+10-GC</td>
<td>107)</td>
</tr>
<tr>
<td>Fungi</td>
<td>18S rRNA</td>
<td>DGGE</td>
<td>NS1-GC/NS2</td>
<td>72)</td>
</tr>
<tr>
<td>Fungi</td>
<td>ITS</td>
<td>RISA</td>
<td>1406F3127T</td>
<td>45)</td>
</tr>
<tr>
<td>Fungi</td>
<td>ITS</td>
<td>RISA</td>
<td>2234C3126T</td>
<td>46)</td>
</tr>
<tr>
<td>Fungi</td>
<td>ITS</td>
<td>T-RFLP</td>
<td>ITS 1f/ITS 4</td>
<td>56)</td>
</tr>
<tr>
<td>VA fungus&lt;sup&gt;d&lt;/sup&gt;</td>
<td>18S rRNA</td>
<td>DGGE</td>
<td>AM1/NS31-GC</td>
<td>60)</td>
</tr>
<tr>
<td>Ascomycetes</td>
<td>ITS</td>
<td>T-RFLP</td>
<td>ITS 1f/ITS 4A</td>
<td>56)</td>
</tr>
<tr>
<td>Ascomycetes</td>
<td>ITS</td>
<td>T-RFLP</td>
<td>ITS5/ITS4-GC</td>
<td>113)</td>
</tr>
<tr>
<td>Basidiomyces</td>
<td>ITS</td>
<td>T-RFLP</td>
<td>ITS 1f/ITS 4B</td>
<td>56)</td>
</tr>
</tbody>
</table>

<sup>a</sup> Two primer sets are shown for nested PCR. 
<sup>b</sup> Seed-associated microbial community. 
<sup>c</sup> Internal transcribed spacer region between the small subunit rRNA and large subunit rRNA genes. 
<sup>d</sup> Vesicular-arbuscular mycorrhizal fungi. 

**References**

1. Seedbacteria: Bacteria
2. Bacteria: Bacteria
3. Fungi: Fungi
4. Endosphere: Bacteria
5. Phylogenome: Bacteria
6. Rhzosphere: Bacteria
7. Archaea: Bacteria
8. Bacteroidetes: Bacteria
9. Burkholderia: Bacteria
10. ARB: Bacteria
11. SAU: Bacteria
12. Streptomyces: Bacteria
13. Eukaryote: Bacteria
14. VA fungus: Bacteria
15. Ascomycetes: Bacteria
16. Basidiomyces: Bacteria

NII-Electronic Library Service
primer sets for these microbes have been developed\(^{56,76,93,98,105}\). By using group-specific primers, Costa et al.\(^{13}\) have also revealed that the extent of "rhizosphere effects" is largely dependent on the plant species, as well as the microbial groups under examination. Although a series of PCR primer sets are available as "universal primers", one should keep in mind that none of the presently available primers will amplify all sequences from the corresponding eukaryotic, bacterial, or archaeal domains.

In the case of microbial community analyses in the endosphere, it has been reported that the major portion of the clone library for a (partial) 16S rDNA gene fragment, which was amplified by using universal primers for eubacteria, often contains plant organelle-derived 16S rRNA sequences\(^{99}\). In order to circumvent this problem, Chelius and Triplett\(^{8}\) have reported the use of a primer (799f) that was designed for the specific amplification of bacterial 16S rRNA gene sequences directly from root tissues. Although the successful application of this primer has been shown in several studies\(^{3,36}\), it has further been reported that this primer set may have underestimated the diversity of microbial communities based on a comparison of the T-RFLP profiles with another set of primers\(^{41}\). In addition, a bias of this primer for proteobacteria has been described by Reiter and Sessitsch\(^{100}\). Recently, Rasche et al.\(^{87}\) have shown that their 16S rDNA gene libraries, generated using the 799f primer, contain large numbers of clones assigned as chloroplast sequences, indicating that the specificity of this primer is also dependent upon the genotypes of the plant organelle. Caution should therefore be taken when microbial community analyses are conducted with this primer set.

While the assessment of bacterial diversity is less problematic due to the availability of universal primers for bacterial domains, fungal community analysis suffers from the effects of co-amplification of DNA from other eukaryotic organisms such as plants, algae, and nematodes\(^{61}\). Although there are several studies that have reported attempts to resolve this problem\(^{56,58}\), the specificity of these primer sets is still not sufficient, especially when applied to fungal community analyses of the phytosphere.

Due to the technical limitations in the purification of environmental DNA samples, it is not feasible to expect the complete elimination of all potential contaminants from the phytosphere materials. In order to overcome the potential inhibition of PCR by such contaminants, and to perform stable PCR amplifications, a series of special additives are often incorporated into the amplification mixtures. Among these, we recommend bovine serum albumin (BSA), as it is relatively inexpensive and has helped to generate stable PCR amplifications in our laboratory for the analysis of diverse biological materials including phytosphere\(^{44,47}\). Other additives such as GC-Melt (Clontech, Palo Alto, CA, USA) may also be of great assistance in PCR amplifications of target sequences containing a high GC content, as is the case for Actinomycetes.

While the microbial community in a phytosphere sample may contain a high level of diversity, it may also consist of taxonomically similar groups of microbes. In the latter case, mis-priming during PCR may become a major problem and result in the formation of chimeras during amplification. In order to minimize this, two strategies are usually employed for analyzing microbial communities. These are the use of a "hot start program"\(^{73}\) and a "touch down program"\(^{79}\), and these conditions can also be used in combination.

**Fingerprinting techniques**

There are four principal fingerprinting techniques that have been widely applied to microbial community analyses of the phytosphere. These are denaturing gradient gel electrophoresis (DGGE), single strand conformation polymorphism (SSCP), terminal restriction fragment length polymorphism (T-RFLP), and ribosomal intergenic spacer analysis (RISA). The principles, advantages, and disadvantages of these techniques have been described in recent reviews\(^{47,59}\). Therefore, we have herein focused on the current status of the application of these techniques to microbial community analyses of the phytosphere in the present review.

**RNA-based community analysis**

DNA-based community analyses do not necessarily reflect the metabolic activity or prove the viability of the corresponding organisms, due to the presence of dead cells or extracellular DNA in the environment under study. Hence, a RNA-based community analysis is more suitable for elucidating the metabolically active members of a bacterial population, since the amount of rRNA can generally be correlated with the growth activity of bacteria\(^{114}\). To date, several reports have described the results of RNA-based community analyses, and distinct differences have been observed between DNA- and RNA-based analyses\(^{18,37,96,91,100}\). In these studies, the RNA-derived community profiles were found to be less complex than their DNA-derived counterparts. As a consequence, one of the most recent achievements in phytosphere microbiology is the application of stable isotope probing (SIP) in combination...
with RNA-based fingerprinting\textsuperscript{49}. Plant roots release 1–25\% of their net photosynthetic metabolites as soluble and insoluble compounds into the rhizosphere\textsuperscript{75}. By taking advantage of this fact, microbial community analyses have revealed the flow of stable isotopically labeled carbon from the atmosphere into microbes in the rhizosphere\textsuperscript{65,85}.

**Microbial community analysis in phytosphere by culture-independent methodologies**

(1) Assessment of biotic and abiotic environmental factors

The use of culture-independent methodologies to analyze microbial communities has potential when assessing the environmental impact of biotic and abiotic factors on plant-associated microbial communities in both natural and agricultural settings. Because of concerns about global warming, the impact of elevated CO\textsubscript{2} levels upon the rhizosphere was examined as they could possibly affect microbial community structures through alterations in the carbon flow from photosynthetic activities\textsuperscript{49,56}. Similarly, the rice rhizosphere has also been subjected to microbial community analyses due to growing concerns regarding methane emission from rice fields. Lu and Conrad\textsuperscript{49} applied a RNA-based community analysis to the identification of methanogenic Archaea in the rice rhizosphere, in combination with stable isotope-probing techniques, and have shown that a methanogenic archaea group is mainly responsible for CH\textsubscript{4} production in rice field soil.

Methane-oxidizing bacteria (MOB) have also been recognized as an important microbial group in the reduction of methane emissions from rice agriculture. Therefore, evaluations of the community structures of this group of bacteria have been conducted by several groups\textsuperscript{21,60}, and shown that the population size and activity of MOB in the rhizosphere were mainly affected by plant growth stages. Dohrmann and Tebbe\textsuperscript{77} have also shown that ozone stress has only small effects on the structural diversity of the bacterial communities in the rhizosphere. These findings indicate the usefulness of culture-independent community analyses of the phytosphere to global environmental assessments.

Environmental risk assessments of genetically modified organisms (GMOs) have become one of the major areas for the application of culture-independent microbial community analyses. The impact of transgenic plants on the microbial community in the phytosphere has been examined, and was found to be negligible in comparison with natural variations such as plant growth stages and growth conditions\textsuperscript{4,21,24,28,33,86,95,98}. Similarly, the impact of genetically modified rhizobia on rhizosphere microbial communities have been extensively examined\textsuperscript{28,92,96,107,111,112}. Despite a number of environmental assessments of upland transgenic crops, no transgenic rice has so far been investigated for the effects upon microbial communities in the phytosphere. However, an examination of the possible impact of transgenic rice on microbial communities may be very important environmentally, since altering the genotypes of rice plants may either increase or decrease global CH\textsubscript{4} emissions from rice fields\textsuperscript{65,77,79}. These microbial community analyses of phytospheres could thus allow us to examine the possible impact of GMOs on the environment more comprehensively, and minimize the environmental risk in the utilization of GMOs in open fields such as the cultivating of transgenic plants or releasing of genetically modified microbes as a biological control agent or a plant growth promoter.

Microbial community analyses of the phytosphere have also begun to provide new insights into the relationships between the incidence of disease and microbial diversity. Disease symptoms are not always visible on infected plants, and specific diseases can remain latent for long periods\textsuperscript{61,73,94}. Because the economic losses associated with latent infections are considerable for some plants, including various tree species, due to their long period of cultivation, microbial community analyses may be useful as diagnostic tests to guarantee pathogen-free conditions, at least at the time of planting\textsuperscript{25}. In addition, these community analyses provide an opportunity to screen for potential new antagonistic microbes which may be useful biological control agents for plant pathogens in the phytosphere. In this regard, McSpadden-Gardener and Weller\textsuperscript{73} have studied microbial community structures in disease suppressive soil to survey candidate antagonistic microbes responsible for this suppression. More recently, Reiter and Sessitsch\textsuperscript{96} have reported that the high tolerance of a variety of potato against common scab may be at least partly due to its ability to host some endophytic Streptomycetes.

(2) Diversity of microbial functional genes

One of the main problems associated with analyzing microbial communities is the difficulty in interpreting any changes of the fingerprinting profiles in terms of their biological significance due to the use of rRNA gene regions. This is because most microbes in nature are unculturable and their functionality can therefore not be predicted accurately based on the analysis of their rRNA gene regions, unless the functionality can be reflected in their phylogenetic locations. In order to circumvent this problem, several studies of the diversity of microbial functional genes in the
phytosphere have been reported (Table 3). The diversity of diazotroph communities in the phytosphere has been studied extensively based on molecular analyses of the nifH genes, due to the importance of this process during crop production\(^{22,24,88,101}\). Recently, Knauth et al.\(^{57}\) have also shown that intraspecies genotypic variations among plants have significant influences on the diversity of the root-associated nifH genes, and suggested that the genetic factors in rice plants that stimulate N\(_2\) fixation by diazotrophs can be identified.

Microbiological denitrification also has become an important area of research due to its influence on the loss of fixed nitrogen in different environments, and on the accumulation of nitric oxide and nitrous oxide which contribute to global warming and the destruction of the stratospheric ozone layer. Similarly, Sharma et al.\(^{99}\) have examined the molecular diversity of the nirK genes, which encode a key enzyme in the denitrification process, in the rhizosphere of grain legumes.

In the phytosphere, several microbial groups are considered important for protection against plant disease. Among these, the chitinolytic bacteria are thought to be important for disease control in the phytosphere\(^{53,118}\). Recently, we have examined the molecular diversity of root-associated bacterial chitinase genes, and have shown the significant influence of the rhizosphere as well as plant genotypes on the composition of the chitinolytic bacterial community\(^{45,48}\). Bergsma-Vlami et al.\(^{53}\) have successfully assessed the genetic diversity of antagonistic Pseudomonas species based on their root colonization ability in the rhizosphere by using DGGE to target a biosynthetic gene for an antibiotic. The results of these reports reemphasize the usefulness of culture-independent methodologies for analyzing the functionality of microbial communities in the phytosphere.

### Conclusions

Whereas a series of culture-independent methodologies are now available for analyzing microbial diversity and functionality, caution should be taken when performing such analyses for the phytosphere, as described in the present review. Culture-independent community analyses will not only be useful for analyzing the roles of uncultured microbes, but also provide new insights into the known beneficial or deleterious microbes in the phytosphere. The application of culture-independent methodologies will thus facilitate a better understanding of plant-microbe interactions across a broad spectrum of microbiological research.

### Acknowledgements

This work was supported in part by a Grant-in-Aid for...

References


90) Reiter, B., and A. Sessitsch. 2006. Bacterial endophytes of the wildflower *Crocus albus* analyzed by characterization of