Saponin Composition in Developing Soybean Seed (Glycine max (L.) Merrill, cv. Mikuriyao)

Makoto Shimoymada, Kyuya Harada* and Kazuyoshi Okubo

Department of Food Chemistry, Faculty of Agriculture, Tohoku University, 1-1 Amamiyamachi Tsutsuimitori, Aoba-ku, Sendai 981, Japan
*National Institute of Agrobiological Resources, 2-1-2 Kannondai, Tsukuba 305, Japan

Received October 16, 1990

Saponins, which have many physiological activities, have been isolated from soybean seeds.1-8 In previous papers,9,10 we reported the saponin composition of soybean plants and germinating seeds. We have now analyzed the variation of saponins in developing soybean seeds.

Shiraiva et al. reported that most varieties of soybean have Aa (acetyl-soyasaponin Aa) and/or Ab (acetyl-soyasaponin Ab) in the seed hypocotyl11 and that these constituents were controlled by codominant allelic alternatives at a single locus.12 However, only Mikuriyao lacks both Aa and Ab, and contains Af (acetyl-soyasaponin Aa) and Ac instead (Fig. 1).11 It is noteworthy that only Mikuriyao have an unusual saponin composition. Studying the saponins in an unusual mutant like this, some important informations would be obtained on the biosyntheses of saponins, the physiological significances of saponins, and the contribution of saponins to undesirable taste of soybean processed foods. These informations are useful to improve the acceptability of soybeans by breeding. So the saponin composition in developing soybean seeds (Glycine max (L.) Merrill, cv. Mikuriyao) were analyzed by HPLC (UV 205 nm) as reported in previous papers.9,10

The fresh and dry weights of developing seed are shown in Fig. 2. The fresh weight rapidly increased until seed thickness reached 7.5 mm (about 55 days after flowering; 0.49 g), then decreased because of dehydration. The dry weight also increased similarly, but subsequently remained constant until maturation.

Saponin constituents were separately analyzed in the hypocotyl and cotyledon. In the hypocotyl, soyasaponin I, Ac, and Af were detected. Each saponin level (% dry weight) increased initially, reached a maximum and gradually decreased until seed maturation (Fig. 3). However, the changing points of each constituent were somewhat different. Namely, soyasaponin I level reached a maximum at 3.5 mm thickness (about 25 days after flowering), then Ac level at 5.5 mm (about 40 days), at last Af level reached it at 6.5 mm (about 50 days). Further the Af level was much higher than any other constituents (max. 2.3%). Each saponin content (per hypocotyl) increased significantly, then remained constant till maturation. It is not thus considered that saponin contents in hypocotyl decrease during maturation.

In the cotyledon (Fig. 4), soyasaponin II as well as soyasaponin I, Ac, and Af were detected. The levels of soyasaponin I, Ac, and Af were much lower than

Fig. 1. Structures of Soybean Saponins.

Abbreviations: β-D-Glc, β-D-Glucopyranosyl; α-L-Rha, α-L-Rhamnopyranosyl; S-I, soyasaponin I; S-II, soyasaponin II. Mikuriyao seeds have Ac, Af, and soyasaponins I and II.
those in the hypocotyl; soyasaponin I was 1/6 of that in the hypocotyl (at 3.5 mm), Af was 1/50 (at 6.5 mm), and Ac was 1/70 (at 7.5 mm). Each saponin level in the cotyledon varied in a similar manner to those in the hypocotyl during maturation. Soyasaponins I and II and Ac levels decreased significantly, but the Af level remained almost constant through to the mature seed. The changing points of Ac and Af were a little faster than those in the hypocotyl (3.5 mm; about 25 days after flowering). The increase of soyasaponin II level were continued till later than the other saponins in the cotyledon (4.5 mm; about 30 days).

Regarding the saponin content (per pair of cotyledons), each saponin initially increased. At first the soyasaponin II content reached a maximum at 5.5 mm (about 40 days; 62 μg), then the contents of soyasaponin I, Ac, and Af reached maxima at 6.5 mm (about 50 days; 85, 25, and 55 μg, respectively). Then the increases of the saponin contents stopped. This changing point is almost equal to that in hypocotyl. In the developing soybean seed, it was shown that the saponin accumulation is completed before the endpoint of fresh and dry weight increases.

Shiraiwa et al. (1982) studied the saponin composition in many varieties of soybean seed hypocotyl, and reported that only Mikuriyaa had Ac and Af instead of the usual acetylated saponins, through most varieties had Aa and/or Ab. It is considered that Af is a desglucosyl Ab, and occurs mainly in the hypocotyl, being detected in small amounts in other Ab type varieties. Mikuriyaa is hence likely to be a variety lacking a glucosyltransferase that catalyzes the glucosylation of a galactosyl moiety of Af.

References


![Fig. 2. Changes in Fresh and Dry Weights of Developing Soybean Seed.](image)

- ○, wet weight; ▲, dry weight.
- The abscissa represents the thickness of immature seed, and the days after flowering was co-plotted. The inset shows the seed thickness of soybean seed.

![Fig. 3. Variation of Saponins in Developing Soybean Seed Hypocotyl.](image)

- A, saponin level (% dry weight); B, saponin content (μg/grain). ○, Ac; ▲, Af; ○, soyasaponin I.
Saponins in Developing Soybean Seed

Fig. 4. Variation of Saponins in Developing Soybean Seed Cotyledon.
A, saponin level (% dry weight); B, saponin content (µg/grain). ●, Ac; ▲, Af; ○, soyasaponin I; △, soyasaponin II.

13) unpublished data.