Surgical Site Infection の感染源は
—術野汚染がSSI（創部感染）に及ぼす影響についての検討—

町田市民病院外科
西川 勝則 田中雄二朗 松本 晶 林 武徳
川野 勤 鈴木 英之 羽生 信義 岩渊 秀一

はじめに：Surgical Site Infection（以下、SSI）発症の原因として術中的細菌汚染に着目し汚染源、感染ルートを検討した。対象/方法：2004年9月から2006年1月までの当機手術104例（上部消化器20例、大腸84例）を対象とした。術中、1）腸管周辺の洗浄水、2）腸管周辺の洗浄水（腹腔内）、3）腹腔内洗浄後の手指、4）腸管縫合後の切断糸、5）腸管縫合後の手指、6）縫合前の皮下組織（皮下）7）ドレープから検体を採取し細菌の培養同定を行った。SSIは術後30日内の縫合不全を除く手術部位感染と定義した。結果：SSIは全例、腹壁表層感染で発生率は上部消化器手術で0%に対し大腸手術では27%だった。人工肛門作成と術中の細菌検出がSSI発生の独立した危険因子であった（RR：7.78、5.02）。術中細菌検出率は大腸手術中56%で、機械的・化学的腸管処置による細菌検出率の低下に関与しなかった。術中細菌検出率は腸管内と皮下でSSI発生例中61%、52%と非発生例に対し有意に高く、特に腸管内の細菌検出がSSI発生の有意な独立危険因子だった（RR：4.88）。考察：SSI発生は術中細菌汚染が主要因の一つであり、特に残存腸腔内洗浄水と皮下の細菌汚染が深く関連していると考えられた。SSIの低減には、徹底した術中細菌汚染のコントロールが再考されるべきであると考えられた。

緒 言
外科手術侵襲により患者の免疫力は低下し感染に対し無防備で易感染状態になる。そのため、過去の外科学の歴史からも手術が感染症との戦いと言っても過言ではなく、術後の感染症が術期の合併症を複雑化させる治療を難渋化させている大きな原因であるといえる。そこで近年、全国の病院で感染対策が患者の安全性、quality of life（以下、QOL）、また病院経営の観点からも注目されてきている。特に、手術部位感染症（Surgical Site Infection；以下、SSI）は院内感染のなかで尿路感染症、呼吸器感染症について発生頻度が高く、手術患者に限れば院内感染症の頻度では1番である。SSIが一旦発生すると入院期間が延長するとともに、医療費が増大し患者の手術治療に対する満足度を著しく損なうことになり、これら医療の質の低下と経済的損失は患者だけでなく病院にとってもリスクである。このような背景から、1999年に米国疾病予防法（center for disease and control prevention；以下、CDC）のSSIガイドラインが公布されて以来、近年SSIに関する関心は我が国においても高まっている。事実、本邦でも1999年に日本病院感染サーベイランス（Japan nosocomial infections surveillance；以下、JNIS）が構築されSSIに関するサーベイランスや予防活動が多数の施設で開始され検討されるようになっている。1)−4)

SSI発生の原因として環境因子、患者因子、細菌因子が考えられているが、環境因子と患者因子に関してもすでにCDCのガイドラインをはじめ多くの施設で研究、報告がされてきている。1)−8)一方で、細菌因子に関してはSSIの原因となる細菌の種類、菌株に関してはいくつかの報告が散見さ
2008年1月

対象/方法

2004年9月から2006年1月まで当院で施行された待機消化器手術症例354例の中で術中細菌培養が施行可能な症例を対象とし術後の総検不全症例は対象外とした。このうち、肝、十二指腸、肝胆管手術を上部消化器手術、結腸、直腸手術を大腸手術として分類した。

上部消化器手術症例は緩和剤ならびに腸管洗浄などの前処置は施行せず周術期の感染予防として塩酸セフェオチアム（CTM）を術前1gと術後2g×3日間投与するのみとし術中の中投与は行わなかった。結腸・直腸症例においては基本的にポリエチレングリコール（PEG：ムーベン®, 味の素（株）、東京）による術前機能的腸管洗浄を施行し、患者や疾患の状態によりPEG服用が困難な症例には緩和剤による腸管処置のみを施した。術前腸管内除菌として經口抗菌薬は主治医の判断のもとにレボフロキサシン（LVFX）300〜400mgが手術前日に経口投与された症例も存在した。予防抗菌薬はセフメタゾールナトリウム（CMZ）が術前1gと術後2g×3日間投与され上部消化器手術同様に術中的投与は全例行わなかった。また、術中の創部保菌・感染予防目的のウード・リトラクター（Applied Medical、CA、USA）は術中に術者の判断のもとに使用された。

手術方法は疾患に応じた標準的な手法で全例開腹手術が施行され腹腔内は術中の汚染度によって2fから6fの温生食によって洗浄が十分に行われた。ドレーンは術中の状況に応じて挿入されたが、いずれも閉鎖式ドレーンを用い術後3〜5日以内に抜去された。腹膜は全例1号の吸収糸（1Coated Vicryl、ethicon、CO、USA）を用いて縫合され皮下組織を洗浄後に皮下・真皮縫合は行わずスキンステップライラーを用いて皮膚を縫合した。創部は皮膚縫合の後、ハイドロコロイド剤にて被覆閉鎖された。SSIの判定は主治医以外の第3者によってなされ、細菌感染の有無に関わらず、術後30日以内に創部の閲覧・排液の出現または発熱を伴う腹腔内感染が画像所見として認められた場合とした。

術後、SSIの汚染源を検索する目的に、術中に以下の7か所で検体を採取しだなおのグラム染色、嫌気培養ならびに菌種同定を行った。1）開腹直後

Table 1 Characteristic of patients and surgical procedures

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (range)</td>
<td>68.4 (10−88)</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>67/37</td>
</tr>
<tr>
<td>Surgical procedure</td>
<td></td>
</tr>
<tr>
<td>Upper digestive surgery</td>
<td>20</td>
</tr>
<tr>
<td>gastrectomy</td>
<td>12</td>
</tr>
<tr>
<td>liver resection</td>
<td>1</td>
</tr>
<tr>
<td>pancreas resection</td>
<td>1</td>
</tr>
<tr>
<td>pancreatic-duodenedectomy</td>
<td>2</td>
</tr>
<tr>
<td>cholecystectomy</td>
<td>3</td>
</tr>
<tr>
<td>small bowel resection</td>
<td>1</td>
</tr>
<tr>
<td>Colorectal surgery</td>
<td>84</td>
</tr>
<tr>
<td>right (hemi) colectomy</td>
<td>23</td>
</tr>
<tr>
<td>transverse colectomy</td>
<td>8</td>
</tr>
<tr>
<td>left (hemi) colectomy</td>
<td>4</td>
</tr>
<tr>
<td>sigmoidectomy</td>
<td>13</td>
</tr>
<tr>
<td>anterior resection</td>
<td>23</td>
</tr>
<tr>
<td>Hartmann’s/Miles operation</td>
<td>10</td>
</tr>
<tr>
<td>others</td>
<td>3</td>
</tr>
</tbody>
</table>
連続変数のため対象全症例の平均に近い数値を境界値とした。解析結果は、いずれもP<0.05をもって有意差ありと判定した。

結 果

調査期間17か月で114例の患者を調査し、このうち10例が緊急手術となったため除外された。最終的に上部消化器手術20例と大腸手術84例の計104例が今回の検討対象となり患者背景ならびに手術方法の内訳はTable1に示した。

1. SSI発生率

SSIは上部消化器手術では発生せず全例、大腸手術で発生し全大腸手術症例中27％（23/84）と有意に高く全体でも22％（23/104）であった。発生したSSIはすべて腹壁表層感染で腹壁深部および臓器・体腔感染は認められなかった（以下：SSI=腹壁表層感染）。

年齢、性別、腹腔内洗浄量、術中細菌検出の有無、ウエンドリトラクターの有無、ウエンドリトラクターの使用、そして人工肛門造設の6項目でSSI発生率を検討すると、人工肛門造設と術中細菌検出症例は有意にSSI発生が高く多変量解析によりSSI発生の独立危険因子であった（Table2）。

各因子がSSIに及ぼす影響を大腸手術に限定し多変量解析にて検討した。なお、人工肛門造設（RR：6.1，CI：1.26—29.44）および術中細菌検出（RR：5.27，CI：1.43—19.43）が有意なSSI発生の独立危険因子であった。ウエンド・リトラクターの使用と腸内除菌は有意ではなかったがSSIの発生が低減する傾向が認められた（Table3）。

術中細菌検出とSSIの関係を術中採取検体ごとに検討してみると、細菌検出症例中、特に閉腹水、皮下およびドレープからそれぞれ41％、41％、39％と高率にSSIが発生し、そのうち閉腹水からの細菌検出がSSI発生に関わる独立した危険因子であった（RR：4.88）（Table4）。

2. 細菌検出率

術中細菌検出は全体の約半数（49％）に認められ閉腹水とドレープにおける検出率が高かった。大腸手術は上部消化器手術に比べ有意に細菌検出率が高く（56％vs.20％）、閉腹水、皮下、ドレープで有意差が認められた（Table5）。

SSIと術中細菌検出との関係はSSI発生群で細菌検出率は78％に対し非発生群では48％と有意に低かった。術中採取検体別の閉腹水、皮下そしてドレープでの細菌の検出が有意にSSI発生群で高率であった。その一方で、助手の交換前手袋と腹膜縫合糸からの細菌検出率はSSI発生群で高い傾向がみられたが有意な差は認められなかった。交換後の細菌検出率はほぼ同等で両群とも閉腹水に次いで低率であった（Fig.1）。

また、大腸手術において各因子が術中細菌検出率に及ぼす影響を多変量解析にて検討したがいずれも細菌検出率の低減因子として有意ではなかった（Table6）。

<table>
<thead>
<tr>
<th>Table 2 Multivariate analysis for SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(n)</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Peritoneal irrigation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Intraoperative bacterial isolation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Wound retractor</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Stoma construction</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

CI：confidence interval
Table 3 Multivariate analysis for SSI in colorectal surgery

<table>
<thead>
<tr>
<th>Variable</th>
<th>(n)</th>
<th>SSI rate</th>
<th>P-value</th>
<th>Risk ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 68</td>
<td>37</td>
<td>24.3%</td>
<td>0.404</td>
<td>1.68</td>
<td>0.5-5.65</td>
</tr>
<tr>
<td>> 68</td>
<td>47</td>
<td>29.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>45</td>
<td>31.1%</td>
<td>0.187</td>
<td>2.35</td>
<td>0.66-8.37</td>
</tr>
<tr>
<td>female</td>
<td>39</td>
<td>23.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peritoneal irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 4 L</td>
<td>59</td>
<td>18.6%</td>
<td>0.127</td>
<td>2.61</td>
<td>0.76-8.94</td>
</tr>
<tr>
<td>> 4 L</td>
<td>25</td>
<td>48.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraoperative bacterial isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>47</td>
<td>38.3%</td>
<td>0.012</td>
<td>5.27</td>
<td>1.43-19.43</td>
</tr>
<tr>
<td>(-)</td>
<td>37</td>
<td>13.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wound retractor isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>27</td>
<td>18.5%</td>
<td>0.202</td>
<td>0.41</td>
<td>0.11-1.6</td>
</tr>
<tr>
<td>(-)</td>
<td>57</td>
<td>31.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoma construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>13</td>
<td>61.5%</td>
<td>0.024</td>
<td>6.1</td>
<td>1.26-29.44</td>
</tr>
<tr>
<td>(-)</td>
<td>71</td>
<td>21.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Bowel preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>64</td>
<td>29.7%</td>
<td>0.367</td>
<td>1.93</td>
<td>0.46-8.11</td>
</tr>
<tr>
<td>(-)</td>
<td>20</td>
<td>20.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral antibiotic administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>17</td>
<td>17.6%</td>
<td>0.628</td>
<td>0.68</td>
<td>0.14-3.24</td>
</tr>
<tr>
<td>(-)</td>
<td>67</td>
<td>29.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI: confidence interval

Table 4 Multivariate analysis for SSI by intraoperative bacterial isolation

<table>
<thead>
<tr>
<th>Pathogens isolation</th>
<th>(+)</th>
<th>(-)</th>
<th>p-value</th>
<th>Risk-ratio</th>
<th>95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peritoneal irrigation fluid (at laparotomy)</td>
<td>20.0% (1/5)</td>
<td>22.2% (22/99)</td>
<td>0.085</td>
<td>0.07</td>
<td>0.003-1.44</td>
</tr>
<tr>
<td>Peritoneal irrigation fluid (before closure)</td>
<td>41.2% (14/34)</td>
<td>12.9% (9/70)</td>
<td>0.023</td>
<td>4.88</td>
<td>1.25-19.1</td>
</tr>
<tr>
<td>Peritoneal suture</td>
<td>37.5% (6/16)</td>
<td>18.8% (16/85)</td>
<td>0.413</td>
<td>2.14</td>
<td>0.35-13.3</td>
</tr>
<tr>
<td>Surgical gloves (before)</td>
<td>35.0% (7/20)</td>
<td>19.5% (16/82)</td>
<td>0.517</td>
<td>0.59</td>
<td>0.12-2.96</td>
</tr>
<tr>
<td>Surgical gloves (after)</td>
<td>17.6% (3/17)</td>
<td>23.0% (20/87)</td>
<td>0.082</td>
<td>0.21</td>
<td>0.04-1.22</td>
</tr>
<tr>
<td>Subcutaneous tissue</td>
<td>41.4% (12/29)</td>
<td>14.9% (11/74)</td>
<td>0.277</td>
<td>2.23</td>
<td>0.53-9.4</td>
</tr>
<tr>
<td>Surgical drapes</td>
<td>39.4% (13/33)</td>
<td>14.5% (10/69)</td>
<td>0.314</td>
<td>2.21</td>
<td>0.47-10.4</td>
</tr>
</tbody>
</table>

CI: confidence interval

Table 5 Comparison of intraoperative bacterial isolation between upper digestive and colorectal surgery

<table>
<thead>
<tr>
<th></th>
<th>Total (n)</th>
<th>Upper digestive surgery (n)</th>
<th>Colorectal surgery (n)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peritoneal irrigation fluid (at laparotomy)</td>
<td>5.0% (5)</td>
<td>0.0% (0)</td>
<td>6.0% (5)</td>
<td>0.263</td>
</tr>
<tr>
<td>Peritoneal irrigation fluid (before closure)</td>
<td>33.0% (34)</td>
<td>5.0% (1)</td>
<td>39.3% (33)</td>
<td>0.018</td>
</tr>
<tr>
<td>Peritoneal suture</td>
<td>16.0% (16)</td>
<td>5.3% (1)</td>
<td>18.3% (15)</td>
<td>0.161</td>
</tr>
<tr>
<td>Surgical gloves (before)</td>
<td>20.0% (20)</td>
<td>10.0% (2)</td>
<td>20.0% (16)</td>
<td>0.298</td>
</tr>
<tr>
<td>Surgical gloves (after)</td>
<td>16.0% (17)</td>
<td>10.0% (2)</td>
<td>17.9% (15)</td>
<td>0.393</td>
</tr>
<tr>
<td>Subcutaneous tissue</td>
<td>28.0% (29)</td>
<td>5.0% (1)</td>
<td>33.3% (28)</td>
<td>0.011</td>
</tr>
<tr>
<td>Surgical drapes</td>
<td>32.0% (33)</td>
<td>10.0% (2)</td>
<td>37.3% (31)</td>
<td>0.019</td>
</tr>
<tr>
<td>Total</td>
<td>49.0% (51)</td>
<td>20.0% (4)</td>
<td>56.0% (47)</td>
<td>0.004</td>
</tr>
</tbody>
</table>

CI: confidence interval
Fig. 1 Intraoperative bacterial isolation rate by the incidence of SSI
Bacterial isolability during operation was significantly high from samples at peritoneal irrigation fluid, subcutaneous tissue, and surgical drapes in the SSI group.

Table 6 Multivariate analysis for intraoperative bacterial isolation in colorectal surgery

<table>
<thead>
<tr>
<th></th>
<th>Isolation rate</th>
<th>P-value</th>
<th>Risk ratio</th>
<th>95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 68</td>
<td>48.9%</td>
<td>0.527</td>
<td>1.34</td>
<td>0.54~3.32</td>
</tr>
<tr>
<td>> 68</td>
<td>38.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>51.1%</td>
<td>0.154</td>
<td>0.51</td>
<td>0.19~1.29</td>
</tr>
<tr>
<td>female</td>
<td>35.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peritoneal irrigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 4 L</td>
<td>47.5%</td>
<td>0.218</td>
<td>1.97</td>
<td>0.67~5.81</td>
</tr>
<tr>
<td>> 4 L</td>
<td>36.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wound retractor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>45.6%</td>
<td>0.921</td>
<td>0.95</td>
<td>0.36~2.54</td>
</tr>
<tr>
<td>(-)</td>
<td>40.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoma construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>45.1%</td>
<td>0.944</td>
<td>0.95</td>
<td>0.25~3.6</td>
</tr>
<tr>
<td>(-)</td>
<td>38.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical bowel prep.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>40.0%</td>
<td>0.655</td>
<td>0.78</td>
<td>0.27~2.28</td>
</tr>
<tr>
<td>(-)</td>
<td>45.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral antibiotic admin.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>43.3%</td>
<td>0.805</td>
<td>0.87</td>
<td>0.28~2.7</td>
</tr>
<tr>
<td>(-)</td>
<td>47.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI : confidence interval

3. 分離菌種
術中採取検体および術後の創部感染創からの分離菌種を示す（Table 7）。大腸手術では好気性、嫌気性のグラム陽性球菌からグラム陰性桿菌まで幅広い菌種が術中に分離同定されているなかで、Streptococcus属（24.9%）、嫌気性グラム陽性・陰性桿菌（13.7%）、Staphylococcus属（13.2%）が比較的多く検出された。一方で、上部消化器手術
では Streptococcus 属、Staphylococcus 属、Enterobacter 属が検出細菌の大半を占めており、大腸手術と比較し、分離菌種は有意に相違していた（P < 0.01）。

術後の感染創からの分離菌種は嫌気性グラム陰性桿菌種の 25% を筆頭に Enterococcus 属 21.9%、Enterobacter 属 15% と腸内細菌の検出が高率に認められた。

SSI 発生群の術中分離菌種は非発生群に比べ Streptococcus 属の検出率が低値である以外に両者に分離菌種に差は認められなかった（Table 8）。

4. 分離菌の整合性
感染創創からの分離菌種と術中分離菌種との整合性を検討した。

SSI 発生 23 例中、感染創からの細菌培養が可能であった 20 例が対象となった。このうち、縫合糸からの細菌検出症例中 4 例（66.7%）に感染創部と分離菌種の整合がみられ皮下も 12 例中 6 例（50%）とある程度の整合性が認められた（Table 9）。

Table 7 Organisms isolated intraperatively and those from SSI

<table>
<thead>
<tr>
<th>Isolated Pathogens</th>
<th>SSI wound (32)</th>
<th>Upper digestive* (9)</th>
<th>Colorectal* (197)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus sp.</td>
<td>2 (6.3%)</td>
<td>4 (44.4%)</td>
<td>49 (24.9%)</td>
</tr>
<tr>
<td>Enterococcus sp.</td>
<td>4 (12.5%)</td>
<td>3 (33.3%)</td>
<td>26 (13.2%)</td>
</tr>
<tr>
<td>Gram-positive cocc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerobes</td>
<td>7 (21.9%)</td>
<td>0 (0.0%)</td>
<td>16 (8.1%)</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>7 (3.6%)</td>
</tr>
<tr>
<td>Gram-positive rods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerobes</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>14 (7.1%)</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>1 (3.1%)</td>
<td>0 (0.0%)</td>
<td>4 (2.0%)</td>
</tr>
<tr>
<td>Gram-negative cocci</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerobes</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>1 (0.5%)</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>1 (3.1%)</td>
<td>0 (0.0%)</td>
<td>27 (13.7%)</td>
</tr>
<tr>
<td>Gram-negative rods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerobes</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>1 (0.5%)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>14 (7.1%)</td>
</tr>
<tr>
<td>Enterobacter sp.</td>
<td>5 (15.0%)</td>
<td>2 (22.2%)</td>
<td>5 (2.5%)</td>
</tr>
<tr>
<td>Serratia sp.</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>2 (1.0%)</td>
</tr>
<tr>
<td>Krenyiella pneumoniae</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>1 (0.5%)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>4 (12.5%)</td>
<td>0 (0.0%)</td>
<td>2 (1.0%)</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>8 (25.0%)</td>
<td>0 (0.0%)</td>
<td>27 (13.7%)</td>
</tr>
</tbody>
</table>

* P < 0.01 between upper digestive vs. colorectal in organisms isolated intraperatively by student t-test

考察
術後の感染症は、細菌を主体とした感染微生物による因子（細菌因子）、医療行為など感染を引き起こす背景、環境因子（環境因子）そして感染を受けた患者側の防御能（患者因子）のバランスによって決定される14。近年、手術・麻酔手技や手術環境の向上、周術期管理の徹底などによる外科手術の適応拡大に伴い高齢者をはじめ低栄養、貧血、脱水および免疫不全などの重篤な基礎疾患、合併症を有する患者の手術が増加している。また、化学・放射線療法などの抗癌治療後の手術も医療の発達とともに増え、このようなハイリスク、コンプロマイズドホストの症例に対しても侵襲の大きい手術が行われるようになり、術後感染の様相も複雑になっている。このため、多くの施設で術後感染の原因究明のためさまざまなデータ解析や試みが行われ、SSI 発生は周術期の抗菌剤投与・輸血、BMI または合併症などがある要因の一つとしてすでにコンセンサスが得られている138〜139。しかしながら、SSI は無菌状態で発生することはなく、必ず細菌の存在・増殖が不可欠である。このことは、人
Table 8 Intraoperative bacterial isolation rate by incidence of SSI

<table>
<thead>
<tr>
<th>Intraoperative isolated Pathogens</th>
<th>Isolated organisms (detection rate)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSI (86)</td>
<td>no-SSI (120)</td>
</tr>
<tr>
<td>Gram-positive coccus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerobes</td>
<td>18 (20.9%)</td>
<td>35 (29.2%)</td>
</tr>
<tr>
<td>staphylococcus sp.</td>
<td>5 (5.8%)</td>
<td>24 (20.0%)</td>
</tr>
<tr>
<td>enterococcus sp.</td>
<td>8 (9.3%)</td>
<td>8 (6.7%)</td>
</tr>
<tr>
<td>Anaerobes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gram-positive bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerobes</td>
<td>8 (9.3%)</td>
<td>6 (5.0%)</td>
</tr>
<tr>
<td>corynebacterium sp.</td>
<td>2 (2.3%)</td>
<td>2 (1.7%)</td>
</tr>
<tr>
<td>bacillus species</td>
<td>1 (1.2%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Anaerobes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gram-negative coccus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerobes</td>
<td>11 (12.8%)</td>
<td>16 (13.3%)</td>
</tr>
<tr>
<td>moraxalla sp.</td>
<td>0 (0.0%)</td>
<td>1 (0.8%)</td>
</tr>
<tr>
<td>Gram-negative bacillus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerobes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>6 (7.0%)</td>
<td>8 (6.7%)</td>
</tr>
<tr>
<td>Enterobacter sp.</td>
<td>5 (5.8%)</td>
<td>2 (1.7%)</td>
</tr>
<tr>
<td>Serratia sp.</td>
<td>2 (2.3%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>K erebilia pneumominae</td>
<td>0 (0.0%)</td>
<td>1 (0.8%)</td>
</tr>
<tr>
<td>pseudomonas aeruginosa</td>
<td>1 (1.2%)</td>
<td>1 (0.8%)</td>
</tr>
<tr>
<td>Anaerobes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>13 (15.1%)</td>
<td>14 (11.7%)</td>
</tr>
<tr>
<td></td>
<td>1 (1.2%)</td>
<td>0 (0.0%)</td>
</tr>
</tbody>
</table>

Table 9 Identicalness of organisms between bacteria isolated intraoperatively and those isolated from SSI

<table>
<thead>
<tr>
<th>Number of cases identical/isolated</th>
<th>Identical rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation fluid (laparotomy)</td>
<td>1/1 100.0%</td>
</tr>
<tr>
<td>Irrigation fluid (closure)</td>
<td>4/14 28.6%</td>
</tr>
<tr>
<td>Suture</td>
<td>4/6 66.7%</td>
</tr>
<tr>
<td>Gloves (before)</td>
<td>1/7 14.7%</td>
</tr>
<tr>
<td>Gloves (after)</td>
<td>1/3 33.3%</td>
</tr>
<tr>
<td>Subcutaneous</td>
<td>6/12 50.0%</td>
</tr>
<tr>
<td>Drapes</td>
<td>5/13 38.5%</td>
</tr>
</tbody>
</table>

工肛門造設と並んで術中細菌検出が独立したSSI発生の危険因子であり、また術中細菌検出がSSI非発生群で約50％に対し発生群では約80％にのぼる事実からも裏付けられた。

今回はSSI発症症例のすべてが腹壁表層感染（Superficial Incisional SSI）だったため結果的に創部感染に対する検討となった。しかし、過去に術前腸管処置法の違いによる腹腔内残存洗浄水からの細菌検出に関して検討した報告はみられたが直接、細菌検出とSSIもしくは創部感染との関係を検討した報告ではなかった11-13。したがって、今回の術中の部位別細菌検出とSSIの関係を検討したことは非常に特徴的であるといえる。このなかで、閉腹水における残留細菌の検出が術後のSSI発生の有意な危険因子であり、またSSI症例中には皮下およびドレープからの高率な細菌検出の事実は術中、開腹創から漏出した残留細菌を含んだ洗浄水が皮下およびドレープと広範に接触し結果的に創部が汚染され創部感染の発生が惹起されるものと推測された。その一方で、交換後手袋からの細菌検出率はSSI発生群/非発生群いずれも低値でSSI発生群では手袋交換前より細菌検出率が低下していた。この事実から術中手袋交換が結果的にSSI発生のリスクを下げると考えられた。また、腹腔内洗浄量の比較で術中細菌検出率は少ない洗浄量の方が高い傾向がみられ（Table 6）、SSIの発生率は逆に多量洗浄で高率に認められていた（Table 3）。これは術中汚染の程度に応じて術者が洗浄量を変えていたためと考える。つまり術野汚染が著明な場合は必然的に腹腔内洗浄量が増加し、
逆に小汚染手術では洗浄量が少なくなる傾向がみられたと考えられた。

細菌因子、つまりSSIの起因菌は術中の手術スタフ、手術器具や落下細菌などの外因性由来よりも、患者皮膚常在菌や消化管内腔からの細菌の漏出などの内因性由来の要因の関与が大きいと考えられる。実際に今回の検討で感染創部から分離された細菌の約80％以上はグラム陰性桿菌、腸球菌、プドウ球菌やエンテロバクターなどのいわゆる腸内細菌や皮膚常在菌で占められていた。一方で、創部感染が認められなかった上部消化器手術では術中検出細菌の大半が非腸内細菌種であり、またSSI非発生群で有意にプドウ球菌属の検出率が発生群より高かった結果からもこれらの創部感染に関与している可能性は低いと考えられた。

感染創と術中からの検出菌種の違いは術期に投与された抗菌薬が原因と考えられた。つまり今回、術期中に抗菌薬としてCMZを用いていたためCMZに強い感受性がみられる大腸菌などは抗菌薬が組織に移行することで死滅し、一方で感受性が低いもしくは見られない細菌種（嫌気性グラム陰性桿菌類、Enterococcus属、Enterobacter属や緑膿菌など）が術後、SSI発生に関与したものと推測された。また、縫合系、皮下およびドレープからの検出菌種と感染創からの検出菌種との整合性が高かったことから、SSI発生群は創感染の起因菌によって術中からすでに汚染されていたことが示された。さらに、SSIの起因菌が閉腹水からも検出されており縫合系、皮下またはドレープからの検出菌種と同種であった事実から術中の中汚染された洗浄水が創部、ドレープや手袋に付着して污染部位の拡大につながった可能性が示唆された。

また、今回の検討では統計学的な有意差は得られなかったがウエンド・リトラクター使用のほか経口脳内除菌の投与もSSI発生を低減させられる可能性が示唆された。実際に、腸内除菌群と非除菌群間では術中細菌検出率の差は認められなかったが、分離菌種の違いには有意差がみられ除菌効果が現れているものと考えられた。しかし、適切な静脈的抗菌薬投与によって余計な経口抗菌薬の投与は不必要との報告もみられる。確かに、経口抗菌薬を上乗せすることで静脈的抗菌薬で対応しきれない細菌に対して抗菌スペクトルを広げられる可能性があるが、逆に起因菌に対する薬剤感受性を低下させ腸管内細菌に薬交代現像を生じさせてしまう結果になると、否定的な意見もありまだ結論は出ていない。

その一方で、今回の検討から術中細菌検出群におけるSSI発生群と非発生群の間で明らかに術中検出細菌種に違いが認められなかった。このことは、SSI発生には術野汚染の抑制だけでなく、すでに諸家によって報告されているさまざまな宿主側の術期の免疫力の低下につながる因子（手術時間、輸血など）も要因の一つであることが示唆された。しかし、術野汚染は術者をはじめとする手術スタッフの意識改革（手袋交換、ドレープ交換など）によって容易に制御可能であり、同時に腸管吻合等の腸管粘膜が露出する時間の短縮化、切離・吻合腸管の創外への誘導など手術技の工夫で腸内細菌の腹腔内への浸出・落下を予防することも可能であると思われ、より徹底した手術室や術野の感染制御の検討が必要であると考えられた。

なお、本論文の要旨は第107回日本外科学会定期学術集会（2007年4月、大阪）にて発表した。

文献
2) 佐貫潤一, 古崎 薫, 大塚裕一ほか : 腸管手術における術後感染予防対策, 日外感染症研 14: 175−179, 2002
3) 櫻村暢一 : SSI予防と医療経済, 日外感染症会誌 2 : 67−72, 2005
4) 小林美奈子, 大森重昭, 登内 仁ほか : Anti-SSI best practice 作成に向けてのSurveillanceの意義, 日外感染症会誌 1 : 61−63, 2004
5) 森妻啓太, 小森敏司, 阿部哲夫ほか : 外科手術部位感染サーベイランス, 環境感染 15 : 130−144, 2000
6) 大城知子, 橋本章之, 向野賢治ほか : 手術部位感染 (SSI) サーベイランスとそのリスク要因の検
術野汚染とSSI（創部感染）の関連性の検討

14) 炭山嘉伸, 有馬陽一: 外科感染制御の現状と問題点. 外科 67: 125−131, 2005

18) 炭山嘉伸, 横山隆: 消化器外科手術における抗生剤の使用法をめぐって. 日消外会誌 27: 2358−2367, 1994

19) 炭山嘉伸: 消化器外科感染症における腸内細菌の重要性. 日消外会誌 30: 121−125, 1997
Where does the Surgical Site Infection (SSI) Originate From?
—Influence of Surgical Field Contamination to the SSI (wound)—

Katsunori Nishikawa, Yuujirou Tanaka, Akira Matsumoto, Takenori Hayashi, Susumu Kawano, Hideyuki Suzuki, Nobuyoshi Hanyuu and Shuuichi Iwabuchi
Division of Surgery, Machida Municipal Hospital

Background: The prevalence of surgical site infection (SSI) makes it important role to prevent postoperative infection, but intraoperative bacterial contamination (IBC), a major cause of SSI, has not been well studied. We studied the relationship between IBC and SSI. Methods: Subjects were 104 patients undergoing elective digestive tract surgery—20 with upper digestive surgery and 84 with colorectal surgery—between September 2004 and January 2006. Seven samples—1) irrigation fluid after laparotomy, 2) irrigation fluid before abdominal closure (CLOS), 3) swab being of gloved fingers before peritoneal lavage, 4) cutting sutures ligated for peritoneal closure (SUT), 5) swab being of gloved fingers after peritoneal suture, 6) subcutaneous swab being of the surgical wound (SUBCUT), and 7) swab being of surgical drapes around the surgical wound—were obtained intraoperatively and examined for bacterial identification. SSI, in this study, was defined as an occurrence of infection within 30 days after surgery at the site during the operation without postoperative anastomotic leakage. Results: Overall SSI was 0% (0/20) in upper digestive surgery and 27% (23/84) in colorectal surgery. The risk of SSI was 7.78 in stoma construction and 5.02 in intraoperative bacterial detection (IBD) (p<0.05). IBD was 56% in colorectal surgery and mechanical preparation and oral antibiotic administration did not reduce IBD. In the SSI group, bacteria were detected in 61% of CLOS and 52% of SUBCUT sites, compared to 25% of CLOS and 21% of SUBCUT in the non-SSI group. Of the 7 IBD samples, bacterial detection from CLOS was the only individual risk factor for SSI (4.88%). Microorganisms from SUT and SUBCUT were identical to those from SSI wounds. Conclusion: Intraoperative contamination is considered as an important factor in SSI. Bacterial contamination of remaining irrigation fluid and the subcutaneous surgical wound seems to be highly correlated, and SSI does not develop without bacteria. Thorough IBC control must thus be considered top priority in SSI prevention.

Key words: surgical site infection (SSI), intraoperative bacterial contamination (IBC), colorectal surgery

Reprint requests: Katsunori Nishikawa Division of Surgery, Machida Municipal Hospital
2-15-41 Asahimachi, Machida, 194-0023 JAPAN

Accepted: June 27, 2007