Subsequent Rupture after Clip on Wrap Method for Ruptured Dissecting Aneurysm of the Distal Middle Cerebral Artery: A case report and review of the literature

Shigeyuki SAKAMOTO, Fusao IKAWA, Hitoshi KAWAMOTO, Naohiko OHBAYASHI and Tetsuji INAGAWA

Department of Neurosurgery, Shimane Prefectural Central Hospital, Himebara-cho, Izumo-shi, Shimane 693-8555, Japan

ABSTRACT

Dissecting aneurysms rarely occur in the middle cerebral artery (MCA). Furthermore, recurrent subarachnoid hemorrhage from ruptured dissecting aneurysms is rare with no published report of subsequent rupture after treatment by the clip on wrap method.

The case reported is a 41-year-old man with subarachnoid hemorrhage. Angiography demonstrated aneurysm at the right M2 portion. We performed surgery to prevent rebleeding during the acute stage. Surgery revealed a discolored protrusion of the arterial wall of the lesion. The lesion was clipped on wrapping with Bemsheet. At one month postoperatively, angiography showed neither aneurysmal formation nor stenosis at the right M2, but after 5 months a subsequent rupture occurred. Angiography demonstrated pseudoaneurysm formation at the same portion of the right M2. The lesion was trapped with anastomosis of the superficial temporal artery (STA) to the MCA. He was discharged following a good recovery.

The rate of subsequent rupture in ruptured dissecting aneurysm in the MCA is 14.3% in published papers. Acute surgery must be performed to prevent the risk of re-rupture. In our single case report, trapping was effective treatment.

Key words: Middle cerebral artery, Ruptured dissecting aneurysm, Subarachnoid hemorrhage, Subsequent rupture, Treatment

Dissecting aneurysms have been recognized to be the cause of ischemic or hemorrhagic stroke. The reported number of dissecting aneurysms in the anterior circulation is small compared to the number in the posterior circulation. To date, there have been only 31 reported cases of spontaneous dissecting aneurysms of the middle cerebral artery (MCA). Whether trapping, wrapping, or flow reversal proximal to a bypass procedure is the optimal management for these cases is uncertain.

We report a case of recurrent subarachnoid hemorrhage from ruptured dissecting aneurysms of the M2 portion of the MCA secondary to treatment through trapping of the aneurysm and anastomosis of the superficial temporal artery (STA) to the MCA. A review of the literature is made on dissecting aneurysms of the MCA, especially ruptured dissecting aneurysms of the MCA.

CASE REPORT

A 41-year-old man with a sudden onset of headache and vomiting was referred to our hospital on November 18, 1999. A computed tomographic (CT) scan on day 0 revealed a subarachnoid hemorrhage (Fig. 1). The Hunt & Hess grade was II. Angiography performed on day 0 showed an aneurysm at the M2 portion unrelated to the branching zones of the right MCA (Fig. 2). After ruling out infectious disease, we conducted surgery to prevent re-bleeding from the spontaneous aneurysm on day 0. During the operation, we diagnosed that the aneurysm was a ruptured dissecting aneurysm due to the following reason. The wall of the aneurysm was thin and had a discolored protrusion, and the parent artery of the proximal and distal branch of the aneurysm was normal. The lesion was clipped on wrapping with Bemsheet in order to avoid possible perforator...
Fig. 1. Axial CT scan on admission revealed subarachnoid hemorrhage.

Fig. 2. Right carotid angiogram on admission. Arterial phase, AP view. Aneurysm at the M2 portion unrelated to the branching zones of the right MCA is shown (arrow).

Fig. 3. Postoperative angiography demonstrated disappearance of aneurysm.

Fig. 4. Right carotid angiogram on re-admission. Arterial phase, AP view. Angiography showed pseudoaneurysm formation at the M2 portion (arrow).
Ruptured Dissecting Aneurysm of the Distal MCA

The patient was discharged without neurological deficit on December 22, 1999. However, on April 6, 2000, he again suffered a sudden onset of headache. A CT scan revealed a subarachnoid hemorrhage limited to the right sylvian fissure. The Hunt & Hess grade was III. Angiography showed a pseudoaneurysm formation at the same clipped portion of the M2 (Fig. 4). To prevent risk of rebleeding under the diagnosis of re-ruptured dissecting aneurysm, he was surgically treated. The lesion was trapped and flow to the distal MCA was preserved with anastomosis of the STA to the MCA. The patient awoke from surgery with left hemiparesis due to a small infarction of the perforating area on CT scan (Fig. 5). Postoperative angiography demonstrated the disappearance of the aneurysm (Fig. 6). He gradually recovered after rehabilitation. He was discharged after a favorable recovery on June 6, 2000.

DISCUSSION

The reported number of dissecting aneurysms in the anterior circulation is small compared to the number in the posterior circulation. To our knowledge, there have been 31 reported cases of spontaneous dissecting aneurysms of the MCA. On the other hand, dissecting aneurysms in the anterior circulation have been recognized as the cause of ischemic stroke. However, spontaneous dissecting aneurysms of the MCA tend to be caused by hemorrhagic stroke, because 17 including our present case occurred with hemorrhage, 10 with infarction, two with both hemorrhage and infarction, and two with incidental. Proximal dissecting aneurysms of the MCA might cause ischemic stroke and distal dissecting aneurysms of the MCA might cause hemorrhagic stroke.

Treatment of ruptured dissecting aneurysms of the MCA has not been established because of the small number of dissecting aneurysms of the MCA and lack of knowledge of the natural history. However, surgical treatment is necessary because of the possibility of subsequent rupture or changes in the dissecting aneurysms in ruptured dissecting aneurysms of the MCA. Surgical treatment was performed in 17 (81.0%) of the 21 cases of ruptured dissecting aneurysms of the MCA (Table 1). Surgical treatment of the M1 portion was performed in 4 of the 5 cases by 1 wrapping, 2 clipping and 1 proximal occlusion with STA-MCA anastomosis. That of the M1-M2 portion was performed in 2 of the 5 cases by 1 clipping and 1 coating. That of the M2 portion was performed in 6 of the 6 cases by 2 trapping, 2 trappings with STA-MCA anastomosis, 1 wrapping with STA-MCA anastomosis and 1 ligation with STA-MCA anastomosis. That of the M3 portion was performed in 5 of the 5 cases.
Table 1. Reptured Dissecting Aneurysm of the Middle Cerebral Artery

<table>
<thead>
<tr>
<th>Authors (Year)</th>
<th>Age, Sex</th>
<th>Location</th>
<th>Re-stroke</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunze, et al, (1971)<sup>2</sup></td>
<td>34, M</td>
<td>proximal (M1)</td>
<td>none</td>
<td>conservative</td>
</tr>
<tr>
<td>Kamiyama, et al, (1990)<sup>9</sup></td>
<td>45, F</td>
<td>proximal (M1)</td>
<td>none</td>
<td>clipping</td>
</tr>
<tr>
<td>Mizutani, (1998)<sup>14</sup></td>
<td>41, F</td>
<td>proximal (M1)</td>
<td>none</td>
<td>wrapping</td>
</tr>
<tr>
<td>Hashimoto, et al, (1999)<sup>5</sup></td>
<td>56, F</td>
<td>proximal (M1)</td>
<td>none</td>
<td>proximal occlusion with STA-MCA</td>
</tr>
<tr>
<td>Niikawa, et al, (2002)<sup>17</sup></td>
<td>46, F</td>
<td>proximal (M1)</td>
<td>none</td>
<td>clipping and wrapping</td>
</tr>
<tr>
<td>Ramsey, et al, (1948)<sup>21</sup></td>
<td>47, M</td>
<td>proximal (M1-2)</td>
<td>none</td>
<td>conservative</td>
</tr>
<tr>
<td>Mizutani, (1998)<sup>14</sup></td>
<td>67, F</td>
<td>proximal (M1-2)</td>
<td>rupture</td>
<td>conservative</td>
</tr>
<tr>
<td>Nimura, et al, (2000)<sup>18</sup></td>
<td>61, F</td>
<td>proximal (M1-2)</td>
<td>none</td>
<td>coating</td>
</tr>
<tr>
<td>Ono, et al, (2001)<sup>19</sup></td>
<td>68, F</td>
<td>proximal (M1-2)</td>
<td>none</td>
<td>conservative</td>
</tr>
<tr>
<td>Kamiyama, et al, (1990)<sup>9</sup></td>
<td>27, F</td>
<td>distal (M2)</td>
<td>none</td>
<td>trapping with STA-MCA anastomosis</td>
</tr>
<tr>
<td>Kawaguchi, et al, (1997)<sup>10</sup></td>
<td>48, M</td>
<td>distal (M2)</td>
<td>none</td>
<td>wrapping with STA-MCA anastomosis</td>
</tr>
<tr>
<td>Anzai, et al, (1999)<sup>2</sup></td>
<td>26, M</td>
<td>distal (M2)</td>
<td>none</td>
<td>ligation with STA-MCA anastomosis</td>
</tr>
<tr>
<td>Anzai, et al, (1999)<sup>2</sup></td>
<td>24, M</td>
<td>distal (M2)</td>
<td>none</td>
<td>trapping</td>
</tr>
<tr>
<td>Nakashima, et al, (2002)<sup>16</sup></td>
<td>29, M</td>
<td>distal (M2)</td>
<td>none</td>
<td>trapping</td>
</tr>
<tr>
<td>Sasaki, et al, (1991)<sup>26</sup></td>
<td>41, F</td>
<td>distal (M3)</td>
<td>rupture</td>
<td>resection with STA-MCA anastomosis</td>
</tr>
<tr>
<td>Hashimoto, et al, (1995)<sup>6</sup></td>
<td>44, M</td>
<td>distal (M3)</td>
<td>none</td>
<td>resection</td>
</tr>
<tr>
<td>Anzai, et al, (1999)<sup>2</sup></td>
<td>52, F</td>
<td>distal (M3)</td>
<td>none</td>
<td>resection</td>
</tr>
<tr>
<td>Isono, et al, (2002)<sup>9</sup></td>
<td>30, M</td>
<td>distal (M3)</td>
<td>none</td>
<td>resection</td>
</tr>
<tr>
<td>Sakamoto, et al, (inpress)</td>
<td>65, F</td>
<td>distal (M3)</td>
<td>none</td>
<td>resection with STA-MCA anastomosis</td>
</tr>
<tr>
<td>present case</td>
<td>41, M</td>
<td>distal (M2)</td>
<td>rupture</td>
<td>trapping with STA-MCA anastomosis</td>
</tr>
</tbody>
</table>

* STA-MCA = superficial temporal artery-middle cerebral artery

by 3 resections with and 2 resections without STA-MCA^{2,6,25,26}. Proximal ruptured dissecting aneurysms of the MCA tended to be coated rather than clipped because of the existence of a perforating artery. The distal ruptured dissecting aneurysms of the MCA tended to be trapped or resected. However, there has been no report of subsequent rupture after surgical treatment for a ruptured distal dissecting aneurysm of the MCA.

When we encounter a subarachnoid hemorrhage with aneurysm or aneurysmal dilatation demonstrated on angiogram, the lesion might be a ruptured dissecting aneurysm. There is a possibility that ruptured dissecting aneurysms may cause subsequent rupture. We consider that acute surgery must be performed immediately after detection of the aneurysm to prevent the risk of a second stroke. Subsequent stroke of dissecting aneurysms of the MCA occurred in 5 (15.6%) of the 32 cases, including our present case, with 3 cases caused by hemorrhagic stroke^{14,26} and 2 caused by ischemic stroke^{3,11}. In ruptured dissecting aneurysms of the MCA, subsequent rupture occurred in 3 (14.3%) of the 21 cases^{1,4,26}. In our case, subsequent rupture occurred at 5 months after treatment with clip on wrapping. On the other hand, in two cases of ruptured dissecting aneurysms, preoperative repeat angiograms demonstrated enlargement of the aneurysm for short periods, although subsequent rupture did not occur^{6,17}. In our case, we performed clipping on wrapping with Bemisheet to prevent perforator occlusion for the ruptured dissecting aneurysm of the M2 portion. Postoperative angiography demonstrated the disappearance of the aneurysm and patency of the parent artery. However, subsequent regrowth and rupture was caused at a short period after treatment by this method. The dissecting wall of the vessel was weak because of acute widespread disruption of the internal elastic lamina¹⁵. In ruptured dissecting aneurysms of the M2 or M3 portion, trapping is likely to be a more useful method than coating or wrapping, if necessary, in preserving the circulation distal to the aneurysm.

(Received December 20, 2002)
(Accepted February 10, 2003)

REFERENCES

