Original Article

Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube

Atsuya Takagi¹, Akihiko Hirose², Tetsuji Nishimura³, Nobutaka Fukumori⁴, Akio Ogata⁴, Norio Ohashi⁴, Satoshi Kitajima¹ and Jun Kanno¹

¹Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
²Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
³Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
⁴Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakumin-cho, Shinjuku-ku, Tokyo 169-0073, Japan

(Received November 20, 2007; Accepted December 9, 2007)

ABSTRACT — Nanomaterials of carbon origin tend to form various shapes of particles in micrometer dimensions. Among them, multi-wall carbon nanotubes (MWCNT) form fibrous or rod-shaped particles of length around 10 to 20 micrometers with an aspect ratio of more than three. Fibrous particles of this dimension including asbestos and some man-made fibers are reported to be carcinogenic, typically inducing mesothelioma. Here we report that MWCNT induces mesothelioma along with a positive control, crocidolite (blue asbestos), when administered intraperitoneally to p53 heterozygous mice that have been reported to be sensitive to asbestos. Our results point out the possibility that carbon-made fibrous or rod-shaped micrometer particles may share the carcinogenic mechanisms postulated for asbestos. To maintain sound activity of industrialization of nanomaterials, it would be prudent to implement strategies to keep good control of exposure to fibrous or rod-shaped carbon materials both in the workplace and in the future market until the biological carcinogenic properties, especially of their long-term biodurability, are fully assessed.

Key words: Multi-wall carbon nanotube (MWCNT); Asbestos; Fullerene; Mesothelioma; P53 heterozygous mouse; Micrometer particles

INTRODUCTION

A rapid increase in the usage of nanomaterials in consumer products and medical applications in the near future underlines the importance of understanding its potential toxicity to people and the environment (Lam et al., 2006; Donaldson et al., 2006). Among them, carbon nanotubes and fullerenes have been one of the most extensively researched and developed nanoparticles. Carbon nanoparticles tend to aggregate into micrometer particles due to their cohesive characteristics (Lam et al., 2006; Luo et al. 2004). And they are considered to be very stable in the organism. These two elements lead us toxicologists to consider a concern of the chronic toxicity of micrometer-sized particles before any consideration is made for their pure nanometer-sized properties in our body. Once inside the body, the long-lasting scavenging and inflammatory activities towards the non-degradable micrometer-sized particles would lead to the continuous oxidative stress at their deposit sites, which eventually lead to tissue destruction and, on some occasion, carcinogenesis (Coussens and Werb, 2002). Additional concern is given to the fibrous or...
rod-shaped particles of micrometer length that share the dimension of asbestos reported to be carcinogenic to humans and experimental animals (Hei et al., 2006; WHO, 1986, 1998). Another factor reported to relate with carcinogenic potency of asbestos is the iron (Fe) content. The most potent asbestos (crocidolite or blue asbestos) contains the highest amount of Fe (WHO, 1986). It is explained that Fenton reaction would accelerate the generation of oxygen radical species that lead to carcinogenesis (Jiang et al., 2006; Gulumian and Wyk, 1987).

MWCNTs form micrometer-sized particles of fiber or rod-shape. The diameter ranges from 0.01 to 0.2 micrometer (Hou et al., 2003) and lengths may reach tens of micrometers that correspond to the size and shape of asbestos. Additionally, some CNTs are reported to contain a considerable amount of Fe due to its manufacturing process (Lam et al., 2006). Deducing from those factors, we hypothesized that MWCNT might have carcinogenic potency similar to asbestos when administered to organisms via the same route of exposure. Here, we adopted a short-term bioassay, i.e., the p53 heterozygous mouse intraperitoneal exposure model reported to be sensitive to asbestos and develop mesotheliomas fast (Marsella et al., 1997; Vaslet et al., 2002). This mouse model has been reported to be sensitive not only to genotoxic carcinogens (Pritchard et al., 2003) but also to reactive oxygen species (ROS)-related carcinogenesis (Tazawa et al., 2007) and therefore fits with the postulated carcinogenesis mechanisms of asbestos and asbestos-like particles (Marsella et al., 1997; Vaslet et al., 2002).

MATERIALS AND METHODS

Experimental animals

The p53-heterozygous (p53+/-) mice were generously given by Dr. S. Aizawa (Tsukada et al., 1993). This p53 (+/-) mice were bred with normal wild-type C57BL/6 females (SLC, Shizuoka, Japan). After more than 20 generations of backcrossing, seventy-six male p53(+/-) mice of an age of 9 to 11 weeks were used in this experiment (nineteen per group). All mice were housed individually under specific pathogen-free conditions, with a 12 hr light-dark cycle at the animal facility of NIHS. They were given tap water and autoclaved CRF-1 pellets (Oriental Yeast Co., Ltd.) ad libitum. Experiments were humanely conducted under the regulation and permission of the Animal Care and Use Committee of the National Institute of Health Sciences (NIHS), Tokyo, Japan.

Histology

For evaluation of carcinogenicity, visceral organs including liver, kidney, spleen, lung, digestive tract and macroscopic tumors (*en bloc* in case of severe peritoneal adhesion) were fixed in 10% neutral buffered formalin. After conventional processing, paraffin-embedded sections were stained with hematoxylin and eosin (H&E) and

Fig. 1. Width and length distribution of MWCNT:

Width and length distribution of MWCNT (MITSUI MWCNT-7, Lot NO. 060125-01k) was measured at Tokyo Metropolitan Institute of Public Health. The average width was about 100 nm, and 27.5% of the particles were longer than 5 micrometer.
examined histopathologically under a light microscope.

Materials

Multi-wall carbon nanotube (MITSUI MWCNT-7, Lot NO. 060125-01k), UICC-grade Crocidolite (NIHS material stock), and fullerene (C₆₀, Nanom purple, Frontier Carbon Corporation, Tokyo, Japan) were used in this study.

The number of panicles per weight and size distribution of MWCNT was determined as follows: 1.03 mg of MWCNT was suspended in 5 ml of 5% Triton X-100 (Qbiogene, CA, USA) and sonicated for 30 min, immediately diluted x100 by 5% TX-100, and then an aliquot of 5 microliters was mounted on a glass plate. The plate was heated up to 480 °C for 20 min by an electric oven, metalized by platinum and palladium, and subjected to scanning electron microscope observation. All visual fields were photographed. Number and length of the particles were measured on the enlarged photo prints. As a result, one gram of MWCNT corresponded to 3.55 × 10¹³ particles. The length and width distribution is shown in Fig. 1. The number of particles per weight of the UICC Crocidolite was reported as 2.93 × 10¹² fibers/g (Moalli et al., 1987). The contents of elements in the MWCNT were determined by collision type inductively coupled plasma mass spectrometer (ICP-MS 7500ce, Agilent Technologies, Inc. Santa Clara, CA, USA) and combustion ion chromatography (DX-120, Dionex Corporation, Sunnyvale, CA, USA). The average content of Fe was about 3,500 ppm (0.35%) by a microwave-assisted dissolution procedure with a mix-

Fig. 2. Light microscopic view of administered MWCNT:
Light microscopic view of sonicated MWCNT sample suspension mounted on slide glasses. a) Well-dispersed area of the preparation. b) Close-up view of the boxed area in a). Fine fiber or rod-shaped particles longer than 10 micrometers are seen. c) Aggregated MWCNT. d) Close-up view of the boxed area in c) Aggregates are 50 to 200 micrometers in dimensions.
ture of nitric acid and perchloric acid. Sulfur content was about 470 ppm. Chlorine was 20 ppm and fluorine and bromine were below detection levels (5 and 40 ppm, respectively).

Preparation of particle suspension

MWCNT, crocidolite and fullerene were suspended at a concentration of 3 mg/ml to 0.5% methyl cellulose (Shin-Etsu Chemical Co., Ltd.) solution and autoclaved (121 °C, 15 min). After addition of Tween 80 (Tokyo Chemical Industry Co., Ltd.; final 1.0% conc.), the solutions were subjected to sonication by ultrasonic homogenizer (VP30s, TAIITEC Co. Japan) (cf. Fig. 2).

Treatment of mice

Nineteen male p53 (+/−) mice at the age of 9 to 11 weeks were given single i.p. injection of 1×10^9 of MWCNT particles (corresponding to 3 mg/head) in 1 ml suspension. The number of the particles was set to a moderate value of the reported ranges (Roller et al., 1997) which corresponds to the maximum value recommended by the draft guideline for man-made mineral fibers (Bernstein and Riego Sintes, 1999). Another 19 mice were given single i.p. injection of 3 mg/head suspension (1 ml) of fullerene, and as a positive control of this carcinogenesis study, another 19 mice were given 1×10^9 of crocidolite in 1 ml of suspension (corresponds to 3 mg/head) at the first day of experiment. Vehicle solution (1 ml) was given to 19 mice as negative controls. Satellite groups consisting

Fig. 3. Light microscopic views of administered crocidolite and fullerene:
Light microscopic views of administered crocidolite and fullerene. a) Crocidolite sample consisting of various lengths of rod-shaped particles. b) Fullerene sample consisted of sand grain-like particles of sizes ranging up to 50 micrometers.
Mesothelioma by MWCNT in p53 +/- mouse.

Fig. 4. Early peritoneal responses to MWCNT, crocidolite, and fullerene (10 days after i.p. injection):
Early findings of peritoneal cavity 10 days after i.p. administration of a) MWCNT inducing slight fibrinous deposit, adhesion, ascites retention, and edematous and hypotonic intestinal loops, b) crocidolite inducing slightly edematous intestinal loops, and c) fullerene with no obvious change except for black patchy deposits on the serosal surface.
of 6 wild-type C57BL/6 male mice each were similarly treated and sacrificed at day 10 for the observation of early peritoneal responses.

RESULTS

Although rigorously agitated prior to i.p. injection, the MWCNT sample contained aggregates among dispersed rod-shaped or fibrous particles (Fig. 2). Crocidolite sample was made of evenly dispersed rod-shaped or fibrous particles (Fig. 3a). Fullerene was in polygonal particles of micrometer size (Fig. 3b).

At day 10, the satellite groups were monitored for early responses (Fig.4). MWCNT mice showed slight fibrinous adhesion with a trace amount of ascites with scattered black spots of MWCNT aggregates. The intestine loops were edematous and hypotonic. Crocidolite mice showed similar responses but to a lesser extent, and there were no overt peritoneal adhesions. Bluish green spots of crocidolite aggregates were seen on the peritoneal surface. The Fullerene group showed minimal changes except for the black spots of aggregates on the serosal surfaces.

The vehicle control mice showed no overt change in peritoneal cavity.

The mice of main groups were monitored until one of the groups reached 100% mortality. The highest lethality

![Fig. 5. Macroscopic view of abdominal viscera of MWCNT-treated and crocidolite-treated mouse:](image-url)

Macroscopic view of the abdominal viscera excised en bloc of a) MWCNT-treated mouse that died at day 147, and b) crocidolite-treated mouse moribund on day 172 due to ileus. a) Fibrous adhesions of the visceral organs and multiple peritoneal tumor formation (arrows) are seen. Asterisks indicate the ventral cut end of diaphragma. One tumor penetrates the diaphragma and protrudes into pleural cavity (arrow head). Black spots are the aggregates of MWCNT. b) Multiple nodules up to 2 mm in diameter are induced on the serosal surface including liver (asterisk). Bluish green spots are the aggregates of crocidolite. Histology of the nodules is shown in Fig. 7a.
was seen in the MWCNT group followed by the Crocidolite group, and the study was terminated at week 25 (day 180) and all mice of the Control and the Fullerene groups and 6 of the Crocidolite group were subject to autopsy. MWCNT-treated mice revealed moderate to severe fibrous peritoneal adhesion with slight ascites, fibrous peritoneal thickening with occasional black-colored depositions and a high incidence of macroscopic peritoneal tumors up to 2.7 × 1.5 cm in size (Fig. 5a). Similar findings but to a lesser extent with bluish green deposits were seen in asbestos-treated mice. In some cases, small polyp-like nodules were seen over the serosal surface (Fig. 5b). The Fullerene group showed no peritoneal adhesion, fibrous thickening nor tumor induction. Only small black plaques were scattered on the serosal surface.

Histologically, peritoneal adhesion and fibrous thickening of the MWCNT group mice was due to the formation of fibrous scars and foreign body granulomas against the MWCNT with phagocytic cells including multinucleated giant cells. Adjacent to those fibrogranulomatous lesions, a spectrum of peritoneal mesothelial lesions was seen, from nodular mesotheliomatous pile-ups of atypical mesothelial cells (Fig. 6), typical epithelial mesotheliomas with occasional hobnail appearance and mild to moderate fibrovascular stem formation (Fig. 7a), to large tumors measuring up to 2.7 × 1.5 cm in size composed of anaplastic cells with high mitotic rate and occasional central necrosis compatible with the diagnosis of high-grade malignant mesothelioma (Fig. 7b). Large tumors are invasive to the abdominal wall, diaphragma, liver parenchyma, and pancreas, and in some cases involving the thoracic cavity. No distant metastasis was observed so far as exam-

Fig. 6. Mesothelial response in MWCNT-treated mice:
Fibrous thickening of the peritoneum and foreign body granulomas against the MWCNT with phagocytic cells including multinucleated giant cells are formed in the MWCNT-treated mouse. Mesothelial lesions were found in the vicinity of fibrosis and granulomas. Microscopic mesotheliomatous plaques on the fibrotic peritoneum above a granuloma (MWCNT-treated mouse moribund on day 144 due to multiple mesotheliomas with severe peritoneal adhesion).
A. Takagi et al.

Cumulative mortality rate by mesothelioma is shown in Fig. 8. Mice with large/invasive mesotheliomas considered as cause of death are plotted by Kaplan-Meier method. Second major cause of death was constriction ileus due to severe peritoneal adhesion. Among those moribund/dead or terminated at week 25, there were 3 mice with incidental mesotheliomas in the MWCNT group (cause of death: all three by ileus) and 6 incidental mesotheliomas in the Crocidolite group (cause of death: three by ileus and three terminated at week 25). The overall incidence of mesothelioma after the first incidental case found in the MWCNT group at day 84 were 14/16 (87.5%, 11 found as cause of death, 3 as incidental) in MWCNT and 14/18 (77.8%, 8 found as cause of death, 6 as incidental including 3 terminated at week 25) in the Crocidolite group. Neither tumor induction nor interim death was observed in the Control and the Fullerene groups except for one moribund mouse by chronic pyelonephritis at day 152.

In large fibrous scars/granulation, aggregates similar to those shown in Fig. 2c and 2d were found embedded. Dispersed fibers of MWCNT and crocidolite were found extracellular in the fibrotic lesions or phagocytized by the phagocytic cells. Such fiber-laden cells were found not only in the peritoneal lesions but also in the liver within the hepatic sinusoids or along with the fibrous septum between the hepatic lobes, and in the mesenteric lymph nodes (Fig. 9).

In the Fullerene group, peritoneal lesion was minimal. Only small brownish black plaques were seen on the serosal surface. Histologically, the plaques contained polygonal clefts and lacunae surrounded by a thin layer of foamy cells and separated by thin fibrous septa (Fig.10). The clefts/lacunae corresponded to the injected fullerene aggregates in size and shape. Since fullerene dissolves well in organic solvents, especially in xylene, the embedded particles were washed away during histology preparation, leaving clefts behind. It is noted that the edge of the clefts are tinted brown, indicating possible biodegradation of the surface of the fullerene particles by the phagocytic cells, blending proteins and/or other organic components so that the sub-micrometer fullerene grains become resis-

Fig. 7. Mesotheliomas in the Crocidolite group:

a) Typical mesothelioma nodules with fibrous stem induced in crocidolite-treated mouse (moribund on day 172 with multiple mesotheliomatous nodules with hemorrhagic ascites and peritoneal adhesion). b) Undifferentiated form of mesothelioma (so-called high-grade malignant mesothelioma) found as an invasive tumor of 1×1 cm in size (moribund case on day 170 with multiple invasive mesotheliomas up to 1×1.5 cm in size, severe peritoneal fibrosis and jaundice).
Mesothelioma by MWCNT in p53 +/- mouse.

Fig. 8. Cumulative mortality of MWCNT and crocidolite treated mice by mesothelioma: Mice with large/invasive mesotheliomas considered as cause of death are plotted by Kaplan-Meier method. Second major cause of death was constriction ileus due to severe peritoneal adhesion. Among those moribund/dead or terminated at week 25 (day 180), there were 3 mice with incidental mesotheliomas in the MWCNT group and 6 incidental mesotheliomas in the Crocidolite group. No tumor induction was observed in the Fullerene and the Control groups.

Fig. 9. Extraperitoneal migration of shorter fibers: Phagocytized shorter fibers are found in hepatic sinusoids and local lymph nodes. a) Multinuclear giant cells (asterisks) and mononuclear phagocytic cells (arrow heads) with black fibers are seen in mesenteric lymph nodes (MWCNT-treated moribund mouse on day 159 with mesotheliomas and fibrous adhesion). b) MWCNT-laden phagocytic cells in hepatic sinusoids (arrow heads)(MWCNT-treated mouse found dead on day 84 with multiple mesotheliomas up to 0.7x0.7 cm in size, severe peritoneal fibrosis and pleural effusion).
tant to the solvents.

In summary, intraperitoneally administered MWCNT has induced mesothelioma in the p53(+/−) mice carcinogenesis model, probably due to its resemblance to asbestos in size and shape, and biopersistency.

DISCUSSION

The foreign body carcinogenesis is a category among various mechanisms of carcinogenesis. It has been postulated that ROS and/or RNS generated locally by the inflammatory reactions against non-digestive, long-lasting foreign bodies induces carcinogenic response (Tazawa et al., 2007). And one particular shape and size to enhance

Fig. 10. Fullerene deposits:

Serosa of fullerene-treated mice showed minimum response within this 25-week period. Only black spots were occasionally seen on the surface. Histologically, the spots were made of polygonal slits surrounded by foamy cells and fibrous septa forming a compact fibrous scar. There were no signs of mesothelial response by this treatment. Since fullerene dissolves well to organic solvents especially xylene, the embedded particles were washed away leaving clefts behind. It is noted that the edges of the clefts are tinted brown, indicating possible biodegradation of the surface of the fullerene particles by the phagocytic cells, blending proteins and/or other organic components so that the sub-micrometer fullerene grains become resistant to the solvents (arrow head in inset).
Mesothelioma by MWCNT in p53 +/- mouse.

This potency has been extensively studied on asbestos and man-made fibers (WHO, 1986, 1998). To study the asbestos-type carcinogenesis, the intraperitoneal route has been adopted in parallel to inhalation or tracheal route of lung exposure. There has been some debate on whether rodent models are equivalent to the inhalation exposure to humans (Pott et al., 1994). Current understanding would be that the intraperitoneal model has considerable value on hazard identification in this regard (WHO, 1998, 2002). On the other hand, the p53 (+/-) mice, in general, have been suggested to be a good model to predict carcinogen, especially of a genotoxic nature (Pritchard et al., 2003). Relatively recently, this model has been reported to be sensitive to oxidative stress-mediated carcinogenesis such as foreign body carcinogenesis, producing a tumor with shorter latency periods than in wild-type mice (Tazawa et al., 2007). When asbestos was applied intraperitoneally to this model, mesotheliomas were induced with short latency as well (Marsella et al., 1997; Vaslet et al., 2002). Here, although the genotoxic effect of MWCNT is unclear, our results suggest that intraperitoneal administration of MWCNT possesses carcinogenic potential in p53 (+/-) mice presumably depending on its size/shape and persistency in the organism.

Prediction of the mesotheliomagenic potential of MWCNT in humans cannot be completed by this p53 +/- mouse model study. For example, glass fiber of a same shape and size to asbestos tends to fail to induce mesothelioma in humans because of its relatively faster disappearance from the deposition sites (Lippmann, 1990). Biodurability of MWCNT has to be rigorously tested before making any strong regulatory action. Likewise, Fe content of the material may be an important aspect to its carcinogenicity although our MWCNT contained lower Fe than crocidolite (WHO, 1986).

As shown in Fig.1, MWCNT studied here consists of rods and fibers of various size. In general, a bulk of a nanomaterial may contain a wide spectrum of particles at least in their size, from tens of micrometer down to true nanometer ranges. As suggested in this study by fullerene, micrometer-sized particles may become much smaller by biological activities, such as foreign body digestion activities of phagocytic cells. And yet, it is important to limit the significance of this study to the monitoring of biological activity of a compartment of the MWCNT longer than 5 micrometer. There is no information that this study method would be sensitive to pure nanometer-sized particles within this timeframe, i.e. 25 weeks. Again, this study is considered sufficient for detection of mesotheliomagenesis only by rod-shaped micrometer-sized particles. The biological effects of pure nanometer-sized CNTs and fullerene are not assessed in this study, and therefore, this remains open to further research.

The safety assessment for the new materials such as nanoparticles poses a new paradigm. The key to it is that the full-scale exposure to the public has not yet started. Therefore, there is a good chance that the information from hazard identification studies can directly be fed back to the product development plans so that harmful exposure can be prevented before it happens. In this way, manufacturers can produce safer products without risking themselves and the consumers by waiting for the full chronic toxicology studies including carcinogenicity studies to be finished after their initial (less safe) products are widely marketed.

ACKNOWLEDGMENTS

The authors thank Mr. Masaki Tsuji for technical support. This study was supported by Health Sciences Research Grants H17-kagaku-012 and H18-kagaku-ippan-007 from the Ministry of Health, Labour and Welfare, Japan.

REFERENCES

A. Takagi et al.

