Improvement of Critical Heat Flux Correlation for Research Reactors using Plate-Type Fuel





In research reactors, plate-type fuel elements are generally adopted so as to produce high power densities and are cooled by a downward flow. A core flow reversal from a steady-state forced downward flow to an upward flow due to natural convection should occur during operational transients such as "Loss of the primary coolant flow". Therefore, in the thermal hydraulic design of research reactors, critical heat flux (CHF) under a counter-current flow limitation (CCFL) or a flooding condition are important to determine safety margins of fuel against CHF during a core flow reversal.<BR>The authors have proposed a CHF correlation scheme for the thermal hydraulic design of research reactors, based on CHF experiments for both upward and downward flows including CCFL condition. When the CHF correlation scheme was proposed, a subcooling effect for CHF correlation under CCFL condition had not been considered because of a conservative evaluation and a lack of enough CHF data to determine the subcooling effect on CHF. <BR>A too conservative evaluation is not appropriate for the design of research reactors because of construction costs etc. Also, conservativeness of the design must be determined precisely. In this study, therefore, the subcooling effect on CHF under the CCFL conditions in vertical rectangular channels heated from both sides were investigated quantitatively based on CHF experimental results obtained under uniform and non-uniform heat flux conditions. As a result, it was made clear that CHF in this region increase linearly with an increase of the channel inlet subcooling and a new CHF correlation including the effect of channel inlet subcooling was proposed. The new correlation could be adopted under the conditions of the atmospheric pressure, the inlet subcooling less than 78K, the channel gap size between 2.25 to 5.0mm, the axial peaking factor between 1.0 to 1.6 and L/De between 71 to 174 which were the ranges investigated in this study.


  • Journal of nuclear science and technology

    Journal of nuclear science and technology 35(12), 943-951, 1998-12-25

    Atomic Energy Society of Japan

参考文献:  10件中 1-10件 を表示


  • 本文言語コード
  • 資料種別
  • ISSN
  • NDL 記事登録ID
  • NDL 雑誌分類
  • NDL 請求記号
  • データ提供元
    CJP書誌  NDL  J-STAGE