Isometries of weighted Bergman-Privalov spaces on the unit ball of C^n

Access this Article

Search this Article

Author(s)

Abstract

Let B denote the unit ball in \bm{C}<SUP>n</SUP>, and v the normalized Lebesgue measure on B. For α>-1, define dv<SUB>α</SUB>(z)=Γ(n+α+1)/{Γ(n+1)Γ(α+1)}(1-|z|<SUP>2</SUP>)<SUP>α</SUP>dv(z), z∈ B. Let H(B) denote the space of holomorphic functions in B. For p≥q 1, define<br>(\displaystyle AN)^{\bm{p}}(v<SUB>α</SUB>)={f∈ H(B):\left//f\right//≡[∈t<SUB>B</SUB>{log(1+|f|)}<SUP>p</SUP>dv<SUB>α</SUB>]<SUP>1/p</SUP><∞}.<br>(AN)<SUP>p</SUP>(v<SUB>α</SUB>) is an F-space with respect to the metric ρ(f, g)≡\left//f-g\right//. In this paper we prove that every linear isometry T of (AN)<SUP>p</SUP>(v<SUB>α</SUB>) into itself is of the form Tf=c(f\circψ) for all f∈(AN)<SUP>p</SUP>(v<SUB>α</SUB>), where c is a complex number with |c|=1 and ψ is a holomorphic self-map of B which is measure-preserving with respect to the measure v<SUB>α</SUB>.

Journal

  • Journal of the Mathematical Society of Japan

    Journal of the Mathematical Society of Japan 54(2), 341-347, 2002-04

    The Mathematical Society of Japan

References:  10

Codes

  • NII Article ID (NAID)
    10008204974
  • NII NACSIS-CAT ID (NCID)
    AA0070177X
  • Text Lang
    ENG
  • Article Type
    ART
  • ISSN
    00255645
  • NDL Article ID
    6153492
  • NDL Source Classification
    ZM31(科学技術--数学)
  • NDL Call No.
    Z53-A209
  • Data Source
    CJP  NDL  J-STAGE 
Page Top