Caracterisation des ensembles essentiels

Access this Article

Search this Article

Author(s)

Abstract

In this work we study the essential sets for some Kato measure in (\bm{R}<SUP>d</SUP>-{0}), d≥q 2. Using the caracterisation of Picard principle via the Green kernel associated to the Schrödinger operator Δ-μ; we give a new caracterisation of such sets when μ=(f(.)/\left//.\right//)<SUP>2</SUP>λ where f is assumed to be rotation free nonnegative, decreasing and locally Hölder continuous on {0<\left//x\right//≤ 1}. In particular we obtain results given by T. Tada in the case where d=2 and f(r)=-log r

Journal

  • Journal of the Mathematical Society of Japan

    Journal of the Mathematical Society of Japan 54(2), 467-486, 2002-04

    The Mathematical Society of Japan

References:  12

Codes

  • NII Article ID (NAID)
    10008205055
  • NII NACSIS-CAT ID (NCID)
    AA0070177X
  • Text Lang
    ENG
  • Article Type
    ART
  • ISSN
    00255645
  • NDL Article ID
    6153550
  • NDL Source Classification
    ZM31(科学技術--数学)
  • NDL Call No.
    Z53-A209
  • Data Source
    CJP  NDL  J-STAGE 
Page Top