Changes in Red Blood Cell Behavior during Cerebral Blood Flow Increase in the Rat Somatosensory Cortex: A Study of Laser-Doppler Flowmetry Changes in Red Blood Cell Behavior during Cerebral Blood Flow Increase in the Rat Somatosensory Cortex : A Study of Laser-Doppler Flowmetry

Access this Article

Author(s)

Abstract

The purpose of this study was to investigate red blood cell (RBC) behavior during an increase in local cerebral blood flow (LCBF). We measured changes in RBC behavior by using laser-Doppler flowmetry (LDF) in &agr;-chloralose-anesthetized rats. An increase in LCBF was carried out by approximately 2.5 and 4.0% CO2 inhalation and activation of the somatosensory cortex. The activation of the cortex was induced by electrical stimulation of the hind paw with 1.5-mA pulses (0.1 ms) applied at frequencies of 0.2, 1, 5, and 10 Hz for a 5 s duration. The increases in LCBF and RBC velocity during both CO2 inhalations were larger than that in RBC concentration (p < 0.05). LCBF and RBC velocity during 4.0% CO2 inhalation were larger than those during 2.5% CO2 inhalation (p < 0.05), though there was no significant difference in RBC concentration between the two conditions, suggesting a limitation of capillary volume. During somatosensory stimulation, the evoked LCBF increased with increasing stimulus frequency up to 5 Hz and decreased at 10 Hz. The responses of RBC concentration at 0.2 and 10 Hz were greater than those of RBC velocity (p < 0.05), but no significant differences in response magnitude were found at 1 and 5 Hz between RBC concentration and RBC velocity. These results suggest that the increase in LCBF during neuronal activity is different from that of controlling the LCBF as induced by CO2, and that the regulation of RBC concentration and RBC velocity is controlled by independent mechanisms.

Journal

  • Japanese Journal of Physiology

    Japanese Journal of Physiology 51(6), 703-708, 2001-12-01

    日本生理学会

References:  26

Cited by:  2

Codes

  • NII Article ID (NAID)
    10008295392
  • NII NACSIS-CAT ID (NCID)
    AA00691224
  • Text Lang
    ENG
  • Article Type
    Journal Article
  • ISSN
    0021521X
  • NDL Article ID
    6069562
  • NDL Source Classification
    ZS8(科学技術--医学--解剖学・生理学・生化学)
  • NDL Call No.
    Z53-D40
  • Data Source
    CJP  CJPref  NDL  IR 
Page Top