75 YEARS OF INDEPENDENCE PROOFS BY FRAENKELMOSTOWSKI PERMUTATION MODELS.
Search this Article
Author(s)
Journal

 Mathematica japonicae

Mathematica japonicae 43(1), 177199, 19960101
References: 105
 1
 2
 1 / 2

1
 <no title>

BAAZ M.
Effective quantum observables, 1995
Cited by (1)

2
 A new proof that Krull implies Zorn

BANASCHEWSKI B.
Math. Logic Quarterly 40, 478480, 1994
Cited by (1)

3
 <no title>

BELL J. L.
Boolean valued models and independence proofs in set theory, 1985
Cited by (1)

4
 The Baire category theorem implies the principle of dependent choices

BLAIR C. E.
Bull. Acad. Polon. Sc Ser. Mat. 25, 933934, 1977
Cited by (1)

5
 Prime ideals yield almost maximal ideals

BLASS A. R.
Fundamenta Math. 127, 5766, 1986
Cited by (1)

6
 <no title>

BLASS A. R.
Ωbibliography of mathematical logic: set theory, 1987
Cited by (1)

7
 <no title>

BLASS A. R.
Freyd's models for the independence of the axiom of choice, 1989
Cited by (1)

8
 Metamathematical quantum theory

BOOS W.
J. Symbolic Logic 53, 12891290, 1988
Cited by (1)

9
 Kategoriesdtze und multiples Auswahlaxiom

BRUNNER N.
Z. M. L.  G. d. M. (Math. Logic Quarterly) 29, 435443, 1983
Cited by (1)

10
 Products of compact spaces in the least permutation model

BRUNNER N.
Z. M. L. G. d. M. (Math. Logic Quarterly) 31, 441448, 1985
Cited by (1)

11
 Topologische Maximalprinzipien

BRUNNER N.
Z. M. L. G. d. M. (Math. Logic Quarterly) 33, 135139, 1987
Cited by (1)

12
 A modal logic of consistency

BRUNNER N.
Rend. Sem. Mat. Univ. Padova 93, 1995
Cited by (1)

13
 Permutation models and topological groups

BRUNNER N.
Rend. Sem. Mat. Univ. Padova 76, 149161, 1986
Cited by (1)

14
 <no title>

CAMERON P. J.
Oligomorphic permutation groups, 1990
Cited by (1)

15
 <no title>

COHEN P. J.
The independence of the axiom of choice, 1963
Cited by (1)

16
 Automorphisms of set theory, in L. henkin et al.

COHEN P. J.
Proceedings of the Tarski symposium, 325330, 1974
Cited by (1)

17
 A theorem of StoneCech type, and a theorem of Tychonoff type, without the axiom of choice, and their realcompact analogues

COMFORT W. W.
Fundamenta Math. 63, 97110, 1968
Cited by (1)

18
 Structures, Suppes predicates and Booleanvalued models in physics

DA COSTA N. C. A.
Essays in honor of V. Smirnov, 1995
Cited by (1)

19
 Some connections between set theory and computer science

COWEN R.
Computational logic and proof theory, 1422, 1993
Cited by (1)

20
 On oamorphous and quasi amorphous sets

CREED P.
thesis, 1994
Cited by (1)

21
 <no title>

CROSSLEY J. N.
Algebra and logic, 1975
Cited by (1)

22
 Godel's life and work" in S. feferman et al.

FEFERMAN S.
Kurt Godel: collected works, 136, 1986
Cited by (1)

23
 Comparison of the axioms of local and universal choice

FELGNER U.
Fundamenta Math. 71, 4362, 1971
Cited by (1)

24
 <no title>

FELGNER U.
Models of ZFset theory, 1971
Cited by (1)

25
 The HahnBanach theorem implies the existence of a nonLebesgue measurable set

FOREMAN M.
Fundamenta Math. 138, 1319, 1991
Cited by (1)

26
 <no title>

FORSTER T. E.
Set theory with an universal set, 1992
Cited by (1)

27
 <no title>

FOSSY J.
The Baire category property and some notions of compactness, 1995
Cited by (1)

28
 Uber den Begriff definit und die Unabhdngigkeit des Auswahlaxioms (English translation)

FRAENKEL A.
From Frege to Godel
Cited by (1)

29
 <no title>

FRAENKEL A. A.
Foundations of Set Theory, 1984
Cited by (1)

30
 What is Cantor's continuum problem

GODEL K.
Philosophy of mathematics, 258273, 1964
Cited by (1)

31
 <no title>

GODEL K.
The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory, 1940
Cited by (1)

32
 The independence of the axiom of choice from the Boolean prime ideal theorem

HALPERN J. D.
Fundamenta Math. 55, 5766, 1964
Cited by (1)

33
 The Boolean prime ideal theorem does not imply the axiom of choice

HALPERN J. D.
Symposium in pure mathematics 1967, 83134, 1971
Cited by (1)

34
 Metamathematical theorems equivalent to the prime ideal theorem for Boolean algebras

HENKIN L.
Bulletin A. M. S. 60, 387388, 1954
Cited by (1)

35
 Booleanvalued models of set theory with automorphisms

HERNANDEZ E. G.
Z. M. L. G. d. M. (Math. Logic Quarterly) 32, 117131, 1986
Cited by (1)

36
 Mathematische Probleme

HILBERT D.
Bulletin A. M. S. 8, 437479, 1902
Cited by (1)

37
 <no title>

HODGES W.
Model Theory, 1993
Cited by (2)

38
 <no title>

HOWARD P.
Two models for the Boolean prime ideal theorem, 1995
Cited by (1)

39
 Axiomatic foundations for nonstandard analysis

HRBACEK K.
Fundamenta Math. 98, 119, 1978
Cited by (1)

40
 <no title>

JAUCH J. M.
Foundations of quantum mechanics, 1968
Cited by (1)

41
 <no title>

JECH T.
The axiom of choice, 1973
Cited by (2)

42
 Tychonoff's theorem without the axiom of choice

JOHNSTONE P. T.
Fundamenta Math 113, 1981
Cited by (1)

43
 Almost maximal ideals

JOHNSTONE P. T.
Fundamenta Math. 123, 197209, 1984
Cited by (1)

44
 Nonstandard analysis by axiomatic methods

KAWAI T.
Southeast Asian conference on logic 1981, 1983
Cited by (1)

45
 The Tychonoff product theorem implies the axiom of choice

KELLEY J. L.
Fundamenta Math. 37, 7576, 1950
Cited by (1)

46
 Sous groupes d'automorphismes d'une structure saturee

LASCAR D.
Logic Colloquium 82, 123134, 1984
Cited by (1)

47
 Auswahlaxiom in der Algebra

LAUCHLI H.
thesis, 1962
Cited by (1)

48
 <no title>

LEVY A.
A hierarchy of formulas in set theory, 1965
Cited by (1)

49
 The FraenkelMostowski method for independence proofs in set theory

LEVY A.
Symposium on the theory of models, 221228, 1965
Cited by (1)

50
 The effectivity of existential statements in axiomatic set theory

LEVY A.
Information Sc. 1, 119130, 1969
Cited by (1)

51
 The least permutation model

LIN A.
Bull. Acad. Polon. Sc. Ser. Math. 27, 639643, 1979
Cited by (1)

52
 On the application of Tychonov's theorem in mathematical proofs

LOS J.
Fundamenta Math. 38, 233237, 1951
Cited by (1)

53
 <no title>

LUXEMBURG W. A. J.
Reduced powers of the real number system and equivalents of the HahnBanach theorem., 1967
Cited by (1)

54
 <no title>

MAEDA S.
Lattice Theory and Quantum Logic, 1980
Cited by (2)

55
 The axiom of choice, the LowenheimSkolem theorem and Borel models

MALITZ M.
Fundamenta Math. 137, 5358, 1991
Cited by (1)

56
 Some forms of the axiom of choice

MANKA R.
Jahrbuch K. G. G. (Collegium Logicum) 1, 2434, 1988
Cited by (1)

57
 The order extension principle

MATHIAS A. R. D.
Axiomatic set theory., 179183, 1974
Cited by (1)

58
 <no title>

MOORE G. H.
Zermelo's axiom of choice., 1982
Cited by (1)

59
 Uber die Unabhdngigkeit des Wohlordnungssatzes vom Ordnungsprinzip

MOSTOWSKI A.
Fundamenta Math. 32, 201252, 1939
Cited by (1)

60
 Internal set theory

NELSON E.
Bulletin A. M. S. 83, 11651198, 1977
Cited by (1)

61
 Undefinability of cardinality in Zermelo's set theory with urelements

OKAZAKI H.
Mem. Fac. Edu. (Kumanoto) 27, 313, 1978
Cited by (1)

62
 The HahnBanach theorem implies the BanachTarski paradox

PAWLIKOWSKI J.
Fundamenta Math. 138, 2122, 1991
Cited by (1)

63
 Demonstration de l'integrabilite des equations differentielles ordinaires

PEANO G.
Math. Annalen. 37, 182228, 1990
Cited by (1)

64
 Two model theoretic ideas in independence proofs

PINCUS D.
Fundamenta Math. 92, 113130, 1976
Cited by (1)

65
 Adding dependent choice to the prime ideal theorem

PINCUS D.
Logic colloquium 76., 547565, 1977
Cited by (1)

66
 Definability of measures and ultrafilters

PINCUS D.
J. Symbolic Logic. 42, 179190, 1977
Cited by (1)

67
 <no title>

POINCARE H.
Science et Methode., 1908
Cited by (1)

68
 The ultrafilter principle implies that the projective limit of compact Hausdorff spaces is nonempty

RAV Y.
Bull. Acad. Polon. Sci. Ser. Math. 24, 559562, 1976
Cited by (1)

69
 <no title>

RUBIN H.
Equivalents of the axiom of choice., 1985
Cited by (1)

70
 Some topological theorems equivalent to the prime ideal theorem

RUBIN H.
Bulletin A. M. S. 60, 389, 1954
Cited by (1)

71
 L'axiome de M. Zermelo et son role dans la theorie des ensembles et l'analyse

SIERPINSKI W.
Bull. Acad. Cracovie, C. S. Math. Ser. A., 97152, 1918
Cited by (1)

72
 Zur Axiomatik der Mengenlehre (Fundierungs und Auswahlaxiom)

SPECKER E.
Z. M. L. G. d. M. (Math. Logic Quarterly). 3, 173210, 1957
Cited by (1)

73
 Permutations and the axiom of choice

TRUSS J. K.
Automorphisms of firstorder structures., 131152, 1994
Cited by (1)

74
 Cardinals and the Boolean prime ideal theorem

TSUKADA N.
Sci. Rep. Tokyio K. D. Sect. A. 13, 276283, 1977
Cited by (1)

75
 Constructions of complete metric spaces and compact Hausdorff spaces which are not Baire spaces

TSUKADA N.
Tsukuba J. Math. 17, 159167, 1993
Cited by (1)

76
 <no title>

WAGON S.
The BanachTarski paradox., 1985
Cited by (2)

77
 Neuer Beweis fur die Moglichkeit einer Wohlordnung

ZERMELO E.
From Frege to Godel., 183198, 1967
Cited by (1)

78
 Standard Foundations for Nonstandard Analysis

BALLARD D.
J. Symb. Logic 57, 471478, 1992
DOI Cited by (4)

79
 Combinatory logic and the axiom of choice

BARENDREGT H.
Indagationes Math. 35, 203221, 1973
DOI Cited by (1)

80
 Models of Zermelo Fraenkel set theory as carriers for the mathematics of physics

BENIOFF P. A.
I. J. Math. Physics 17, 618628, 1976
Cited by (1)

81
 Injectivity, projectivity, and the axiom of choice

BLASS A. R.
Trans. Amer. Math. Soc. 255, 3159, 1979
DOI Cited by (2)

82
 The FraenkelMostowski method, revisited

BRUNNER N.
Notre Dame J. Formal. Logic 31, 6475, 1990
DOI Cited by (1)

83
 BanachTarski decompositions using sets with the property of Baire

DOUGHERTY R.
Journal A. M. S. 7, 75124, 1994
DOI Cited by (1)

84
 The axiom of choice

FREYD P.
J. Pure Appl. Algebra 19, 103125, 1980
DOI Cited by (1)

85
 On the role of the Baire category and the dependent choice in the foundations of Logic

GOLDBLATT R.
J. Symbolic Logic 50, 412422, 1985
DOI Cited by (2)

86
 Consequences of arithmetic for set theory

HALBEISEN L.
J. Symbolic Logic 59, 3040, 1994
DOI Cited by (1)

87
 A partition theorem

HALPERN J. D.
Trans. A. M. S. 124, 360367, 1966
DOI Cited by (1)

88
 Six impossible rings

HODGES W.
J. Algebra 31, 218244, 1974
DOI Cited by (1)

89
 Krull implies Zorn

HODGES W.
J. London Math. Soc. 19, 285287, 1979
DOI Cited by (1)

90
 Limitations on the FraenkelMostowski method in independence proofs

HOWARD P.
J. Symbolic Logic 38, 416422, 1973
DOI Cited by (1)

91
 On The Constructive HahnBanach Theorem

ISHIHARA H.
Bull. London Math. Soc. 21, 7981, 1989
DOI Cited by (2)

92
 Equivalents of a weak axiom of choice

KROM M.
Notre Dame J. Formal Logic 22, 283285, 1981
DOI Cited by (1)

93
 Independence, randomness, nad the axiom of choice

VAN LAMBALGEN M.
J. Symbolic logic 57, 12741304, 1992
DOI Cited by (3)

94
 A new proof of the Tychonoff theorem

LOEB P. A.
Am. Math. Monthly 72, 711717, 1965
DOI Cited by (3)

95
 A proof of projective determinacy

MARTIN D. A.
J. Amer. Math. Soc. 2(1), 71125, 1989
DOI Cited by (5)

96
 ZermeloFraenket consistency results by FraenketMostowski methods

PINCUS D.
J. Symbolic Logic 37, 721743, 1972
DOI Cited by (2)

97
 Cardinal representatives

PINCUS D.
Israel J. Math. 18, 321344, 1974
DOI Cited by (2)

98
 Adding dependent choice

PINCUS D.
Ann. Math. Logic 11, 105145, 1977
DOI Cited by (2)

99
 Generic embeddings

PLOTKIN J. M.
J. Symbolic Logic. 34, 388394, 1969
DOI Cited by (1)

100
 On Frege's way out

QUINE W. V.
Mind. 64, 145159, 1955
DOI Cited by (1)
 1
 2
 1 / 2