核融合装置用超伝導コイルの電磁現象 : 強制冷却型超伝導コイル  [in Japanese] Electromagnetic Phenomenon in Superconducting Magnet for Fusion Facility : Forced Flow Superconducting Magnet  [in Japanese]

Access this Article

Search this Article

Author(s)

Abstract

In the design of the International Thermonuclear Experimental Reactor (ITER), a forced flow cooled, Cable-In-Conduit Conductor (CICC) is selected for its magnet system because of its superior performance in withstanding voltage (>10kV) and, more importantly, its mechanical stiffness against large electromagnetic forces. The CICC consists of about 1,000 superconducting strands enclosed in a steel jacket, and due to this configuration, the CICC exhibits a characteristic electromagnetic phenomena which can be a cause of the instability of a conductor. Extensive studies were performed, especially on ac losses, stability, and current imbalance among the strands in order to understand the phenomena and to provide a design basis for CICC to be used in large superconducting magnets. This paper describes the work on developing the CICC including analytic studies regarding the realization of fusion magnets.

Journal

  • Journal of Plasma and Fusion Research

    Journal of Plasma and Fusion Research 78(7), 616-624, 2002-07-25

    The Japan Society of Plasma Science and Nuclear Fusion Research

References:  26

  • <no title>

    ITER-FEAT Final Design Report, IAEA 2001

    Cited by (1)

  • <no title>

    プラズマ 核融合学会誌 78 Suppl, 2002

    Cited by (1)

  • <no title>

    安藤俊就

    電気学会B 120(3), 449, 2000

    Cited by (1)

  • <no title>

    安藤俊就

    低温工学 36, 309, 2001

    Cited by (6)

  • <no title>

    礒野高明

    電気学会B 119(11), 1263, 1999

    Cited by (1)

  • <no title>

    超伝導 低温工学ハンドブック 第II編3章, 1993

    Cited by (1)

  • <no title>

    FAIVRE D.

    IEEE Trans. Magn. 17, 1048, 1981

    Cited by (1)

  • <no title>

    SCHERMER R.

    Advances in Cryogenic Engineering 26, 599, 1980

    Cited by (1)

  • <no title>

    KATO T.

    Advances in Cryogenic Engineering 43, 705, 1998

    Cited by (1)

  • <no title>

    HOENIG M. O.

    Proc. 5th Int. Conf. Magnet Technology 519, 1975

    Cited by (1)

  • <no title>

    YOSHIDA K.

    IEEE Trans. Magn. 32, 2304, 1992

    Cited by (1)

  • <no title>

    Fusion Eng. Des. 7, 3, 1988

    Cited by (1)

  • <no title>

    TSUJI H.

    Proc. MT-11, 806, 1990

    Cited by (2)

  • <no title>

    KOIZUMI N.

    Cryogenics 34, 155, 1994

    Cited by (3)

  • <no title>

    KOIZUMI N.

    Cryogenics 37, 441, 1997

    Cited by (4)

  • <no title>

    小泉徳潔

    低温工学 35, 132, 2000

    Cited by (2)

  • <no title>

    KOIZUMI N.

    Cryogenics 36, 409, 1996

    Cited by (1)

  • <no title>

    KOIZUMI N.

    Proc. MT-15 453, 1998

    Cited by (1)

  • <no title>

    STEEVES M.

    Advances in Cryogenic Engineering 37, 345, 1991

    Cited by (1)

  • <no title>

    MATSUI K.

    IEEE Trans. Magn. 32, 2304, 1996

    Cited by (1)

  • <no title>

    小泉徳潔

    低温工学 36, 368, 2001

    Cited by (1)

  • <no title>

    TSUJI H.

    Nucl. fusion 41(5), 645, 2001

    DOI  Cited by (1)

  • <no title>

    BRUZZONE P.

    Proceeding of SOFT-21 56-57, 125, 2000

    DOI  Cited by (1)

  • <no title>

    NISHI M.

    Cryogenics 34, 505, 1994

    DOI  Cited by (2)

  • <no title>

    ANDO T.

    IEEE Trans. Magn. 27(2), 2060, 1991

    DOI  Cited by (2)

  • <no title>

    NISHI M.

    Cryogenics 33(6), 573, 1993

    DOI  Cited by (1)

Cited by:  1

Codes

  • NII Article ID (NAID)
    10009260161
  • NII NACSIS-CAT ID (NCID)
    AN10401672
  • Text Lang
    JPN
  • Article Type
    Journal Article
  • ISSN
    09187928
  • NDL Article ID
    6238545
  • NDL Source Classification
    ZM35(科学技術--物理学)
  • NDL Call No.
    Z15-8
  • Data Source
    CJP  CJPref  NDL  J-STAGE 
Page Top