Toughness of Ultrafine Grained Ferritic Steels Fabricated by ARB and Annealing Process

この論文にアクセスする

この論文をさがす

著者

抄録

A plain IF steel and a P-added IF steel having various ultrafine grain sizes from 0.24 to 11 μm were fabricated by the accumulative roll bonding (ARB) process followed by annealing. Dynamic fracture toughness of the ultrafine grained IF steels was investigated as a function of grain size by miniaturized Charpy impact test. The static strength of the IF steels significantly increased with decreasing the grain size, while the uniform elongation was limited in the ultrafine grained samples. A number of delamination appeared in the impact-tested specimens, especially in the ultrafine grained materials at low temperatures. It was concluded that the frequent delamination is not owing to insufficient roll-bonding in the ARB specimens but it is rather a characteristic feature of the ultrafine grained materials fabricated through heavy deformation. Because of the delamination, the absorbed energy in the impact test continuously decreased with decreasing the test temperature. On the other hand, an obvious change from the ductile fracture surface characterized by dimples into the brittle fracture surface mainly due to intergranular fracture was recognized at a certain low temperature. The ductile-brittle transition temperature determined from the microscopic fracture surfaces greatly decreased with decreasing the grain size, and finally no brittle fracture happened even at −190°C when the grain size was smaller than 5 μm or 2 μm in the plain IF steel or the P-added IF steel, respectively. It was concluded that the ultra-grain refinement is quite effective to improve the low-temperature toughness of ferritic steels and that it is possible to make phosphorus substantially harmless by grain refinement.

収録刊行物

  • Materials transactions

    Materials transactions 45(7), 2272-2281, 2004-07-20

    公益社団法人 日本金属学会

参考文献:  34件中 1-34件 を表示

被引用文献:  5件中 1-5件 を表示

各種コード

  • NII論文ID(NAID)
    10013337290
  • NII書誌ID(NCID)
    AA1151294X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    13459678
  • NDL 記事登録ID
    7015981
  • NDL 雑誌分類
    ZP41(科学技術--金属工学・鉱山工学)
  • NDL 請求記号
    Z53-J286
  • データ提供元
    CJP書誌  CJP引用  NDL  J-STAGE 
ページトップへ