走査型プローブ顕微鏡を用いた局所空間化学反応の制御

書誌事項

タイトル別名
  • Control of Spatially Localized Chemical Reactions Using a Scanning Probe Microscope
  • ソウサガタ プローブ ケンビキョウ オ モチイタ キョクショ クウカン カガク ハンノウ ノ セイギョ

この論文をさがす

抄録

Control of spatially localized chemical reactions such as site-selective reversible chemical conversion of functional groups and metal deposition on nano and/or micro areas is important to fabricate new devices in the next generation. In this study, the reaction controls were attempted with a nano probe. In the reversible chemical conversion, amino-terminated self-assembled monolayers (SAMs), which were prepared on Si substrates from (p-aminophenyl)trimethoxysilane (APhS) through chemical vapor deposition, were electrochemically converted into nitoroso-terminate ones using an atomic force microscope. The electrochemical reaction required the positive bias voltages of +0.5 to +3V. In order to define the chemical conversion, the sample substrates were immersed in a solution of pH=4 containing carboxylate-modified polystyrene (PS) spheres. The PS spheres were site-selectively adsorbed on the non-scanned regions. This indicates that non-scanned regions justifiably correspond to amino-terminated SAMs. On the other hand, the PS spheres were not adsorbed on the scanned regions at all, since the regions were oxidized and converted into nitoroso-terminated SAMs. Furthermore, the oxidized regions could also be reduced by a probe with negative bias voltage of −2V. The site-selective electroless deposition was actualized using a surface-induced reduction of gold ions combined with scanning probe lithography. Gold nano- or micro-structures on hydrogen-terminated Si surfaces were demonstrated. After fabrication of an Au nanostructure, 1-hexadecanethiol was immobilized on the Au surface. The result shows that we successfully controlled chemical reactions in nanometer-scale by the formation of metal patterns with the SPM.<br>

収録刊行物

  • 表面技術

    表面技術 56 (12), 930-937, 2005

    一般社団法人 表面技術協会

被引用文献 (1)*注記

もっと見る

参考文献 (55)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ