Prenatal development of NMDA receptor composition and function in trigeminal neurons

  • Ishihama Kohji
    First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California
  • Kogo Mikihiko
    First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry
  • Wakisaka Satoshi
    Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry
  • Turman Jr. Jack E.
    Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California Department of Biokinesiology and Physical Therapy, Keck School of Medicine, University of Southern California Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California

この論文をさがす

抄録

The prenatal development of neural circuits for rhythmical oral-motor behaviors used for feeding is essential for the survival of the newborn mammal. The N-methyl-D-aspartate (NMDA) receptor plays a critical role in brainstem circuits underlying postnatal oral-motor behaviors. To understand a role for the NMDA receptor in the emergence of sucking behavior we conducted physiological and immunohistochemical experiments using fetal rats. Physiology experiments examined the development of the NMDA dose response of the brainstem circuit responsible for generating rhythmical trigeminal activity by recording trigeminal motor outputs using an in vitro preparation. The high dose of NMDA agonist bath application affected the mean cycle duration of rhythmical trigeminal activity (RTA) at both embryonic day (E) 18-19 and E20-21 in comparison with standard concentration of NMDA agonist. NMDA receptor immunohistochemistry studies, using antibodies directed against subunits NR1, NR2A, NR2B, NR3A and NR3B were performed to determine the prenatal regulation of NMDA subunits in trigeminal motoneurons (Mo5), and mesencephalic trigeminal neurons (Me5) between E17 to E20. In Mo5, NR1, NR2A, NR2B and NR3A immunoreactivity was observed throughout the time frame sampled. NR3B immunoreactivity was not observed in Mo5 or Me5. In Mo5, there was a significant decrease in the percentage of NR2B immunoreactive neurons between E17 and E20, and a concurrent increase in the NR2A/NR2B ratio between E17 and E20. In Me5, NR1, NR2A and NR3A immunoreactivity was observed throughout the time frame sampled; a significant decrease in the percentage of NR2A immunoreactive neurons between E17 and E20, and NR3A immunoreactive neurons between E17 and E18 occurred. The timing of subunit changes between E17 and E18 is coincident with the prenatal emergence of rhythmical jaw movements, and in vitro rhythmical trigeminal activity, shown in earlier studies. Our data suggest that NMDA receptor plays an important role in the development and function of prenatal oral-motor circuits.

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (141)*注記

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ