Effects of Eccentric Exercise on Joint Stiffness and Muscle Connectin (Titin) Isoform in the Rat Hindlimb

  • Ochi Eisuke
    Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo
  • Nakazato Koichi
    Department of Exercise Physiology, Nippon Sport Science University
  • Ishii Naokata
    Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo

Search this article

Abstract

We investigated the effects of repeated eccentric exercise for rat medial gastrocnemius muscle on ankle joint stiffness and muscle connectin (titin) isoform composition (longer form, α-connectin; shorter form, β-connectin). Male Wistar rats were trained on a custom-made, isokinetic dynamometer (eccentric-exercise group, n = 6; sham-operated group, n = 6). The exercise session consisted of 20 eccentric contractions elicited by submaximal electric stimulations under anesthesia. The contracting muscle was forcibly lengthened by an isokinetic dorsi-flexion of the ankle joint (velocity, 30°/s; range of motion, 45°). Rats in the eccentric-exercise group were trained every two days for 20 days (10 sessions in total). The static passive resistive torque (PRT) of 45° at the ankle joint was used as a measure of the joint stiffness, and was determined before and after the experimental period. After 10 sessions of eccentric exercise, the wet weight of medial gastrocnemius muscle significantly increased (P < 0.05), whereas the static PRT significantly decreased (P < 0.05) in the eccentric-exercise group, when compared to the sham-operated group. Myosin-ATPase staining showed a decrease in the number of type IIb/IId fibers (P < 0.001) and an increase in the number of type IIa fibers (P < 0.05). However, no significant difference was seen in the connectin (titin) isoform composition between the eccentric-exercise group and the sham-operated group, suggesting that the reduction in PRT was not due to change in resting mechanical properties of muscle fibers.<br>

Journal

Citations (6)*help

See more

References(62)*help

See more

Details 詳細情報について

Report a problem

Back to top