脳機能イメージングによるヒト二足歩行の中枢神経制御機構の解明

  • 花川 隆
    国立精神・神経センター神経研究所疾病研究第七部 科学技術振興機構さきがけ

書誌事項

タイトル別名
  • Imaging of the Nural Substrates Involved in the Control of Human Bipedal Gait

この論文をさがす

抄録

Neurophysiological studies on quadruped animals have indicated the importance of the basal ganglia-brainstem system for the neural control of gait. However, recent advances in neuroimaging techniques have also begun to shed light on the role of the cortical motor areas, which project to the brainstem, the spinal cord and the basal ganglia, in the control of bipedal gait in primates. Hemodynamic measurements by single photon emission computed tomography or near-infrared spectroscopy are currently available for studying neural activity during human gait. Neuroimaging studies in healthy human subjects have shown increases in the brain activity during bipedal gait in the brainstem locomotor centers, cerebellum, basal ganglia, and multiple motor cortices, especially the supplementary motor area. Neuroimaging techniques have also been used to elucidate the pathophysiology of gait disturbances in neurological diseases. Decreases in gait-related activation of the supplementary motor area and cerebellar hemispheres, combined with overactivity of the vermis, were previously shown during gait in patients with Parkinson's disease. By contrast, enhanced activation of the lateral premotor cortex was observed during paradoxical improvement of Parkinsonian gait under visual guidance. These studies support the hypothesis that the basal ganglia-motor cortical system plays an important role in regulating human bipedal gait. Neuroimaging techniques are theoretically applicable to examining the influence of the vestibular system on gait and balance and vice versa, but no such studies have thus far been published. Future studies of vestibular-postural interactions using neuroimaging techniques may open a new era in the field of equilibrium research.

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (37)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ