Single-Carrier Based Multiplexing of Layer 1/Layer 2 Control Signals in Evolved UTRA Uplink Using DFT-Spread OFDM

この論文をさがす

抄録

This paper proposes efficient single-carrier (SC) based multiplexing schemes for Layer 1 (L1)/Layer 2 (L2) control signals in SC-FDMA radio access using DFT-Spread OFDM in the Evolved UTRA uplink. L1/L2 control signals are necessary for key packet access techniques such as downlink scheduling, link adaptation, hybrid automatic repeat request (ARQ) with soft combining, and for uplink feedback control signals. We first propose a SC-based multiplexing scheme for L1/L2 control signals within a shared data channel for a set of user equipment (UE) that transmits both an uplink shared data channel and L1/L2 control signals within the same subframe. We also propose a multiplexing scheme for L1/L2 control signals without uplink data transmission that takes advantage of intra-subframe frequency hopping (FH) using multiple exclusively-assigned time-frequency resource blocks (RBs) to obtain a frequency diversity gain. Furthermore, we propose an orthogonal CDMA-based multiplexing scheme using cyclic shifts of a constant amplitude zero auto-correlation (CAZAC) sequence for L1/L2 control signals from different UEs within the same narrowband time-frequency RB. Computer simulation results show that the proposed SC-based multiplexing scheme for the L1/L2 control signals within the shared data channel achieves a higher user throughput than a multicarrier-based multiplexing scheme. The results also show that the proposed multiplexing scheme for the L1/L2 control signals that takes advantage of the intra-subframe FH for the UE without uplink data transmission achieves high quality reception through large frequency diversity gain. Furthermore, we show that the proposed cyclic-shift based orthogonal CDMA multiplexing is effective in the multiplexing of multiple L1/L2 control signals from different UEs within the same RB.

収録刊行物

参考文献 (12)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ