管内全域を進行波とした高効率多段熱音響エンジンの研究

書誌事項

タイトル別名
  • Study on a High-efficiency Multistage Thermoacoustic Engine with a Controlled Acoustic Field that Realizing Traveling Waves within All Resonators
  • カン ナイ ゼンイキ オ シンコウハ ト シタ コウコウリツ タダン ネツ オンキョウ エンジン ノ ケンキュウ

この論文をさがす

抄録

When a narrow duct (i. e. ,regenerator) is installed in a tube while the temperature ratio is higher than some critical value at both ends of the regenerator, the gas inside starts self-excited oscillation. Recently, study on thermoacoustic engines applying thermoacoustic phenomena is being actively conducted. While most waste heat ranges from 400 to 600 K, the critical onset temperature of a thermoacoustic engine is higher, ranging from 600 to 1000 K. In order to solve this problem, a multistage thermoacoustic engine that can lower the critical onset temperature was recently suggested. It was reported that the critical onset temperature was successfully lowered using multistage amplification. However, there is an issue relating multistage engines that realize low-temperature oscillation. A multistage thermoacoustic engines with multiple regenerators needs regenerators installed not only at the peak of acoustic impedance distribution in real part, and therefore is generally inefficient. In this report, we suggest a composition for a multistage thermoacoustic engine using numerical calculation, so that high acoustic impedance and traveling-waves are realized at all regenerator positions, and traveling-waves with acoustic impedance ρc are realized at positions other than the regenerators. Within the suggested composition, the viscous dissipation of the resonators is extremely small. In addition, thermal efficiency of 33% has been achieved with each regenerator when the temperature of the heat exchanger is 600 K. This result suggests that the use of the multistage type enables thermoacoustic engines to have such a composition that both lowtemperature drive and high efficiency.

収録刊行物

  • 低温工学

    低温工学 47 (1), 11-15, 2012

    公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)

被引用文献 (1)*注記

もっと見る

参考文献 (10)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ