Automated Generation of Temperature Fields for Numerical Welding Simulation

この論文にアクセスする

この論文をさがす

著者

    • PITTNER Andreas
    • Federal Institute for Materials Research and Testing (BAM), Division "Safety of Joined components"
    • SCHWENK Christopher
    • Federal Institute for Materials Research and Testing (BAM), Division "Safety of Joined components"
    • RETHMEIER Michael
    • Federal Institute for Materials Research and Testing (BAM), Division "Safety of Joined components"

抄録

The investigation of welding induced distortion requires knowledge regarding the heat effects of welding in terms of a precise description of the temperature field. Welding simulation enables to understand basic phenomenological mechanisms and to evaluate different welding configurations which is, in contrast to experimental investigations, more time- and cost-efficient. The complex physical phenomena of welding processes demand the calibration of phenomenological models against experimental reference data. The calculation of a temperature field that approximates the experimental one very accurately is still a time consuming and difficult task. This is caused by the fact that the model input which yields the optimal temperature field cannot be derived from parameters of the real process directly. This paper focuses on a recently introduced approach that combines empirical and phenomenological modeling techniques. The calibration of the weld thermal models is performed automatically by means of a global optimization scheme and does not require the definition of initial model input parameters. This key feature confirms the benefit potential when it comes to practical utilization of welding simulation because the calibrated temperature field is provided within few minutes without the need for expert knowledge. This is the basis for an efficient determination of the welding induced distortions for industrial applications. Furthermore, the representation of the relationship between model input parameters and process parameters by a neural network enables to predict the temperature field for unknown process parameters that were not considered for calibration. Consequently, the combination of phenomenological and empirical models permits to reduce the experimental effort and bridges the gap between numerical and experimental investigations of the heat effects of welding. The application of this modeling approach is independent of the welding technique under investigation. Exemplarily it is tested for laser beam and GMA-laser hybrid welding. All numerical calculations are validated experimentally.

収録刊行物

  • 溶接学会論文集 : quarterly journal of the Japan Welding Society

    溶接学会論文集 : quarterly journal of the Japan Welding Society 27(2), 219s-224s, 2010-01-20

    JAPAN WELDING SOCIETY

参考文献:  9件中 1-9件 を表示

各種コード

  • NII論文ID(NAID)
    10030149228
  • NII書誌ID(NCID)
    AN1005067X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    02884771
  • データ提供元
    CJP書誌  J-STAGE 
ページトップへ