強度不均質を有するパイプライン周溶接部の切欠き底表面からの延性き裂発生限界に関する検討 Study on ductile crack initiation limit from notch root of pipeline girth welded joints with strength mis-match

この論文にアクセスする

この論文をさがす

著者

抄録

This study investigated ductile crack initiation limit of pipeline girth welded joints with different strength mis-match. The ductile crack initiation limit for the girth welded joints was evaluated by conducting three point bending fracture toughness tests and wide plate tensile tests with a surface notch. In addition, effect of heat input on the ductile crack initiation limit of weld metal was evaluated on the assumption that a welding condition would be varied in the field in the actual pipeline construction. As the results, the equivalent plastic strain at the notch tip for the ductile crack initiation of the three point bending tests was consistent with those of the wide plate tests, and the heat input hardly affected the ductile crack initiation limit within the range of this study. This meant that the ductile crack initiation limit of the pipeline girth welded joints with strength mis-match was able to be estimated using the equivalent plastic strain obtained from the three point bending tests. Based on these results, we proposed a procedure to determine the rational fracture toughness requirements which took into account the difference in the plastic constraint between standard fracture toughness test and pipeline girth welded joints. This procedure was also possible to determine the required strength matching level for a strain-based design for girth welded joint containing surface notch in the center of the weld metal in terms of preventing the ductile crack initiation.

収録刊行物

  • 溶接学会論文集 : quarterly journal of the Japan Welding Society

    溶接学会論文集 : quarterly journal of the Japan Welding Society 28(1), 86-96, 2010-12-31

    一般社団法人 溶接学会

参考文献:  21件中 1-21件 を表示

各種コード

  • NII論文ID(NAID)
    10030149778
  • NII書誌ID(NCID)
    AN1005067X
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    02884771
  • データ提供元
    CJP書誌  J-STAGE 
ページトップへ