Fast Hypercomplex Polar Fourier Analysis

この論文にアクセスする

この論文をさがす

著者

    • YANG Zhuo
    • the Graduate School of Information, Production and Systems, Waseda University
    • KAMATA Sei-ichiro
    • the Graduate School of Information, Production and Systems, Waseda University

抄録

Hypercomplex polar Fourier analysis treats a signal as a vector field and generalizes the conventional polar Fourier analysis. It can handle signals represented by hypercomplex numbers such as color images. Hypercomplex polar Fourier analysis is reversible that means it can reconstruct image. Its coefficient has rotation invariance property that can be used for feature extraction. However in order to increase the computation speed, fast algorithm is needed especially for image processing applications like realtime systems and limited resource platforms. This paper presents fast hypercomplex polar Fourier analysis based on symmetric properties and mathematical properties of trigonometric functions. Proposed fast hypercomplex polar Fourier analysis computes symmetric points simultaneously, which significantly reduce the computation time.

収録刊行物

  • IEICE transactions on information and systems

    IEICE transactions on information and systems 95(4), 1166-1169, 2012-04-01

    一般社団法人 電子情報通信学会

参考文献:  14件中 1-14件 を表示

各種コード

  • NII論文ID(NAID)
    10030942353
  • NII書誌ID(NCID)
    AA10826272
  • 本文言語コード
    ENG
  • 資料種別
    SHO
  • ISSN
    09168532
  • データ提供元
    CJP書誌  J-STAGE 
ページトップへ