視床-大脳皮質経路による運動の制御 : ニホンザルの眼球運動を指標とした研究  [in Japanese] Role of the primate thalamocortical pathways in the generation of eye movements  [in Japanese]

Access this Article

Author(s)

    • 國松 淳 KUNIMATSU Jun
    • 北海道大学大学院医学研究科生理学講座神経生理学分野 Department of Physiology, Hokkaido University School of Medicine
    • 田中 真樹 TANAKA Masaki
    • 北海道大学大学院医学研究科生理学講座神経生理学分野 Department of Physiology, Hokkaido University School of Medicine

Abstract

私たちは思いのままに運動をすることができる。これまで多くの動物実験や臨床研究から,基底核から視床を経て大脳皮質に到る経路が随意運動の発現に関与することが示唆されてきたが,具体的な神経メカニズムはわかっていない。ニホンザルはヒトと同様に大脳皮質が発達しており,複雑な行動課題も訓練できるため,高次脳機能を研究するのに適したモデルである。特に,測定が容易な眼球運動を行動指標とすることにより,行動と神経活動の関係を詳細に検討することができる。近年,我々は眼球運動を指標として自発運動のタイミングの調節や,反射的な行動の抑制を伴った運動を制御する神経機構について研究を行った。これらの行動を行っているときの視床や基底核,前頭葉の神経活動を調べたところ,運動に先立った活動が記録された。また,前頭葉の一部を電気刺激することによって自発的な運動のタイミングを操作することができ,薬理学的に視床を不活化すると運動のタイミングや随意的な運動のパラメーターに変化が生じた。これらの結果から,基底核–視床–大脳皮質経路でみられる運動準備期間中の神経活動が随意運動の制御に重要であることが明らかとなった。この成果は,不随意運動や無動といった運動の異常とともに,感情的な衝動性といった発達障害や精神神経疾患でみられる様々な症状の病態解明につながる可能性がある。

Since the volitional movements are impaired in the subjects with a variety of basal ganglia or frontal lobe dysfunctions, the signals from the basal ganglia through the thalamus to the frontal cortex might be essential for the generation of these movements. Recently, we performed some experiments in Japanese monkeys, <i>Macaca fuscata</i>, and showed a couple of evidence that the basal ganglia-thalamocortical loop plays a role in the generation of volitional saccade eye movements. First, the time courses of preparatory activity in the thalamus and dorsomedial frontal cortex were different depending on the timing of self-initiated saccades. Furthermore, both inactivation and stimulation experiments indicated that these signals played a causal role. Second, we used the anti-saccade task to examine the neural mechanisms of self-controlled behavior. In this task, monkeys were instructed to suppress reflexive saccades to peripheral visual stimuli (pro-saccade), and instead make a saccade in the opposite direction (anti-saccade). The neuronal modulation in the basal ganglia and the motor thalamus was greater during anti-saccades than pro-saccades, and inactivation of these areas solely impaired anti-saccades. These results showed that the signals in the basal ganglia-thalamocortical pathways regulate the voluntary control of eye movements such as self-initiation and reflex suppression. This neural mechanism could be generalized to other motor systems and cognitive functions that are also regulated by the signals through the basal ganglia-thalamocortical pathways.

Journal

  • Hikaku seiri seikagaku(Comparative Physiology and Biochemistry)

    Hikaku seiri seikagaku(Comparative Physiology and Biochemistry) 29(4), 235-241, 2012-12-20

    THE JAPANESE SOCIETY FOR COMPARATIVE PHYSIOLOGY AND BIOCHEMISTRY

References:  47

  • <no title>

    ALEXANDER G. E.

    Annu. Rev. Neurosci. 9, 357-381, 1986

    Cited by (1)

  • <no title>

    ANDERSON M. E.

    J. Neurophysiol. 66, 879-893, 1991

    Cited by (1)

  • <no title>

    ASANUMA C.

    Brain. Res. Rev. 5, 237-265, 1983

    Cited by (1)

  • <no title>

    CONDY C.

    Neurology 63, 1571-1578, 2004

    Cited by (1)

  • <no title>

    CURTIS C. E.

    Cereb. Cortex. 15, 1281-1289, 2005

    Cited by (1)

  • <no title>

    DEVITO J. L.

    Exp. Brain. Res. 46, 107-117, 1982

    Cited by (1)

  • <no title>

    EVARTS E. V.

    Electroencephalogr. Clin. Neurophysiol. 24, 83-86, 1968

    Cited by (1)

  • <no title>

    EVERLING S.

    J. Neurosci. 19, 2740-2754, 1999

    Cited by (1)

  • <no title>

    EVERLING S.

    Neuropsychologia. 36, 885-899, 1998

    Cited by (1)

  • <no title>

    EVERLING S.

    J. Neurosci. 20, 387-400, 2000

    Cited by (1)

  • <no title>

    FORD K. A.

    Neurophysiol. 102, 2334-2341, 2009

    Cited by (1)

  • <no title>

    GOLDBERG J. H.

    Nat. Neurosci. 15, 620-627, 2012

    Cited by (1)

  • <no title>

    GOTTLIEB J.

    Nat. Neurosci. 2, 906-912, 1999

    Cited by (1)

  • <no title>

    HALLETT P. E.

    Vision Res 18, 1279-1296, 1978

    Cited by (1)

  • <no title>

    HIKOSAKA O.

    Physiol. Rev. 80, 953-978, 2000

    Cited by (1)

  • <no title>

    HIKOSAKA O.

    J. Neurophysiol. 53, 292-308, 1985

    Cited by (1)

  • <no title>

    IKEDA A.

    Electroencephalogr. Clin. Neurophysiol. 102, 142-151, 1997

    Cited by (1)

  • <no title>

    IKEDA A.

    Electroencephalogr. Clin. Neurophysiol. 90, 359-364, 1994

    Cited by (1)

  • <no title>

    INASE M.

    J. Neurophysiol. 75, 1087-1104, 1996

    Cited by (1)

  • <no title>

    KAGAYA K.

    J. Neurosci. 30, 1348-1362, 2010

    Cited by (1)

  • <no title>

    KUNIMATSU J.

    J. Neurosci. 30, 5108-5117, 2010

    Cited by (1)

  • <no title>

    KUNIMATSU J.

    Eur. J. Neurosci. 36, 3258-3268, 2012

    Cited by (1)

  • <no title>

    LUNA B.

    Neuroimage 13, 786-793, 2001

    Cited by (1)

  • <no title>

    MATELL M. S.

    Bioessays 22, 94-103, 2000

    Cited by (1)

  • <no title>

    MATSUDA T.

    Psychiatry. Res. 131, 147-155, 2004

    Cited by (1)

  • <no title>

    MCFARLAND N. R.

    J. Neurosci. 22, 8117-8132, 2002

    Cited by (1)

  • <no title>

    MIDDLETON F. A.

    Brain. Res. Brain Res. Rev. 31, 236-250, 2000

    Cited by (1)

  • <no title>

    MOUNTCASTLE V. B.

    Science 155, 597-600, 1967

    Cited by (1)

  • <no title>

    MUNOZ D. P.

    Nat. Rev. Neurosci. 5, 218-228, 2004

    Cited by (1)

  • <no title>

    O'DRISCOLL G. A.

    Proc. Natl. Acad. Sci. U. S. A. 92, 925-929, 1995

    Cited by (1)

  • <no title>

    OPTICAN L. M.

    Ann. N. Y. Acad. Sci. 1039, 132-148, 2005

    Cited by (1)

  • <no title>

    ROBINSON F. R.

    Annu. Rev. Neurosci. 24, 981-1004, 2001

    Cited by (1)

  • <no title>

    SCHALL J. D.

    Biol. Sci. 357, 1073-1082, 2002

    Cited by (1)

  • <no title>

    SCHLAG-REY M.

    Nature 390, 398-401, 1997

    Cited by (1)

  • <no title>

    SHIRES J.

    Curr. Opin Neurobiol. 20, 717-725, 2010

    Cited by (1)

  • <no title>

    SHOOK B. L.

    J. Comp. Neurol. 307, 562-583, 1991

    Cited by (1)

  • <no title>

    TANAKA M.

    Nat. Neurosci. 9, 20-22, 2006

    Cited by (1)

  • <no title>

    TANAKA M.

    J. Neurosci. 27, 12109-12118, 2007

    Cited by (1)

  • <no title>

    TANAKA M.

    Eur. J. Neurosci. 33, 2046-2057, 2011

    Cited by (1)

  • <no title>

    TIAN J-R.

    J. Neurosci. 17, 9233-9247, 1997

    Cited by (1)

  • <no title>

    TOPLAK M. E.

    Percept. Mot. Skills. 100, 659-675, 2005

    Cited by (1)

  • <no title>

    TU P. C.

    J. Psychiatr. Res. 40, 606-612, 2006

    Cited by (1)

  • <no title>

    WATANABE M.

    Eur. J. Neurosci. 30, 2165-2176, 2009

    Cited by (1)

  • <no title>

    WURTZ R. H.

    Science 171, 82-84, 1971

    Cited by (1)

  • <no title>

    YOSHIDA A.

    Cereb. Cortex. 19, 206-217, 2009

    Cited by (1)

  • <no title>

    ZHANG M.

    Nature 408, 971-975, 2000

    Cited by (1)

  • Neural circuit mechanisms for controlling voluntary behavior in crayfish  [in Japanese]

    KAGAYA Katsushi

    Hikaku seiri seikagaku(Comparative Physiology and Biochemistry) 29(1), 3-10, 2012-01-31

    J-STAGE  References (38) Cited by (1)

Codes

  • NII Article ID (NAID)
    10031146947
  • NII NACSIS-CAT ID (NCID)
    AN10391932
  • Text Lang
    JPN
  • Article Type
    REV
  • ISSN
    09163786
  • NDL Article ID
    024222487
  • NDL Call No.
    Z18-1651
  • Data Source
    CJP  NDL  J-STAGE 
Page Top