Thermodynamic Analysis of the Mg-RE-Zn (RE=Y, La) Ternary hcp Phase Using the Cluster Variation Method

Access this Article

Search this Article

Author(s)

Abstract

In this study, thermodynamic properties of the Mg–RE–Zn (RE = Y, La) ternary hcp phase at finite temperature have been investigated by means of first-principles calculations combined with the cluster variation method (CVM). Free energy calculation, including the configurational entropy, shows that the Mg–Y–Zn ternary hcp phase has a tendency to phase separation. Conversely, the Mg–La–Zn ternary system does not exhibit such behavior even around room temperature. Furthermore, the calculated spinodal region extends to a broader composition range and the maximal spinodal temperature reaches above 1000 K for the Mg–Y–Zn system. Conversely, the spinodal region for the Mg–La–Zn system is a limited narrow region near the Mg-rich side, and the maximal spinodal temperature is 300 K. Formation enthalpies calculated on the basis of recent information from structure analyses do not show a definite difference in these two ternary systems. Therefore, we propose that the dominant factors in the formation of a novel long period stacking ordered structure include spinodal decomposition as well as structure transformation from 2H to other structures having periodic stacking faults.

Journal

  • MATERIALS TRANSACTIONS

    MATERIALS TRANSACTIONS 54(5), 636-640, 2013-05-01

    The Japan Institute of Metals and Materials

References:  21

  • <no title>

    LUO Z. P.

    J. Mater. Sci. Lett. 19, 813-815, 2000

    Cited by (1)

  • <no title>

    KAWAMURA Y.

    Mater. Trans. 42, 1172-1176, 2001

    Cited by (1)

  • <no title>

    INOUE A.

    J. Mater. Res. 16, 1894-1900, 2001

    Cited by (1)

  • <no title>

    ABE E.

    Acta Mater. 50, 3845-3857, 2002

    Cited by (1)

  • <no title>

    YAMASAKI M.

    Acta Mater. 55, 6798-6805, 2007

    Cited by (1)

  • <no title>

    KAWAMURA Y.

    Mater. Trans. 48, 2986-2992, 2007

    Cited by (1)

  • <no title>

    MASUMOTO R.

    J. Japan Inst. Metals 73, 683-690, 2009

    Cited by (1)

  • <no title>

    IIKUBO S.

    Phys. Rev. B 86, 054105, 2012

    Cited by (1)

  • <no title>

    YOKOBAYASHI H.

    Acta Mater. 59, 7287-7299, 2011

    Cited by (1)

  • <no title>

    EGUSA D.

    Acta Mater. 60, 166-178, 2012

    Cited by (1)

  • <no title>

    KIKUCHI R.

    Phys. Rev. 81, 988-1003, 1951

    Cited by (1)

  • <no title>

    DE FONTAINE D.

    Solid State Physics 34, 1979

    Cited by (1)

  • <no title>

    SLUITER M. H. F.

    Phys. Rev. B 73, 174204, 2006

    Cited by (1)

  • <no title>

    SLUITER M. H. F.

    Phys. Rev. B 53, 6137-6151, 1996

    Cited by (1)

  • <no title>

    KRESSE G.

    Phys. Rev. B 54, 11169-11186, 1996

    Cited by (1)

  • <no title>

    KRESSE G.

    Comp. Mater. Sci. 6, 15-50, 1996

    Cited by (1)

  • <no title>

    BLOCHL P. E.

    Phys. Rev. B 50, 17953-17979, 1994

    Cited by (1)

  • <no title>

    KRESSE G.

    Phys. Rev. B 59, 1758-1775, 1999

    Cited by (1)

  • <no title>

    PERDEW J. P.

    Phys. Rev. Lett. 78, 1396-1396, 1997

    Cited by (1)

  • <no title>

    OHTANI H.

    Collected Abstracts of 2012, Spring Meeting of The Japan Institute of Metals 424, 2012

    Cited by (1)

  • <no title>

    SUZUKI H.

    Sci. Rep. Res. Inst. Tohoku Univ. A 43, 455-463, 1952

    Cited by (1)

Codes

  • NII Article ID (NAID)
    10031168403
  • NII NACSIS-CAT ID (NCID)
    AA1151294X
  • Text Lang
    ENG
  • Article Type
    REV
  • ISSN
    13459678
  • NDL Article ID
    024446909
  • NDL Call No.
    Z53-J286
  • Data Source
    CJP  NDL  J-STAGE 
Page Top