Multiplicity of a space over another space

この論文にアクセスする

この論文をさがす

著者

抄録

We define a concept which we call multiplicity. First, multiplicity of a morphism is defined. Then the multiplicity of an object over another object is defined to be the minimum of the multiplicities of all morphisms from one to another. Based on this multiplicity, we define a pseudo distance on the class of objects. We define and study several multiplicities in the category of topological spaces and continuous maps, the category of groups and homomorphisms, the category of finitely generated <i>R</i>-modules and <i>R</i>-linear maps over a principal ideal domain <i>R</i>, and the neighbourhood category of oriented knots in the 3-sphere.

収録刊行物

  • Journal of the Mathematical Society of Japan

    Journal of the Mathematical Society of Japan 64(3), 823-849, 2012-07-01

    一般社団法人 日本数学会

参考文献:  10件中 1-10件 を表示

各種コード

  • NII論文ID(NAID)
    10031177251
  • NII書誌ID(NCID)
    AA0070177X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    00255645
  • NDL 記事登録ID
    023829391
  • NDL 請求記号
    Z53-A209
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ