Exercise and oxidative stress in hypoxia

Access this Article

Author(s)

    • Nagasawa Junichi Nagasawa Junichi
    • Bioscience and Technology Program, Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications
    • Ohno Hideki Ohno Hideki
    • Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine

Abstract

There is considerable indirect proof that a hypobaric-hypoxic environment increases oxidative stress, which is usually reflected by an increase in hepatic TBARS levels and a decrease in Mn-SOD levels. In a hypobaric chamber experiment designed to simulate the summit of Mt. Fuji, we detected an increase in hydroperoxide, an oxidative stress marker, although the percentage increase was lower than that observed at Mt. Fuji. This highlights the compounding effects of environmental factors (ultraviolet rays, temperature differences, etc.) and indicates the importance of conducting measurements in the field. Although the production of oxygen radicals increases with accelerated aerobic metabolism, it has been reported that oxidative stress increases even in hypoxic environments. Activation of xanthine oxidase (XO), that accompanies ischemia-reperfusion (I/R) or an increase in white blood cells, etc. are considered as potential mechanisms by which oxidative stress increases in hypoxic environments. However, these mechanisms have not been fully clarified.

Journal

  • The Journal of Physical Fitness and Sports Medicine

    The Journal of Physical Fitness and Sports Medicine 2(4), 481-486, 2013-11-25

    The Japanese Society of Physical Fitness and Sports Medicine

References:  19

Codes

  • NII Article ID (NAID)
    10031203888
  • NII NACSIS-CAT ID (NCID)
    AA12573156
  • Text Lang
    ENG
  • Article Type
    SHO
  • ISSN
    21868131
  • NDL Article ID
    025004301
  • NDL Call No.
    Z76-A776
  • Data Source
    CJP  NDL  J-STAGE 
Page Top