Regular retractions onto finite dimensional convex sets and the AR-property for Roberts spaces

この論文にアクセスする

この論文をさがす

著者

抄録

It is proved that if X is an n-dimensional closed covex subset in a linear metric space E, then there is a retraction r: E→X such that ∥x-r(x)∥[?]2(n+1)∥x-X∥ for every x∈E. This fact is applied to study the AR-property in linear metric spaces. We identify a class of Roberts spaces with the AR-property. We also give a direct proof that for every p∈(0.1),Lp is a needle point space.

収録刊行物

  • Tsukuba journal of mathematics

    Tsukuba journal of mathematics 20(2), 281-289, 1997-01-10

    筑波大学

各種コード

  • NII論文ID(NAID)
    110000027486
  • NII書誌ID(NCID)
    AA00874643
  • 本文言語コード
    ENG
  • 資料種別
    Departmental Bulletin Paper
  • ISSN
    03874982
  • データ提供元
    NII-ELS  IR 
ページトップへ