セルロース固体内部への分散染料の拡散挙動 Diffusion of Disperse Dye into Cellulose Solid

この論文にアクセスする

この論文をさがす

著者

抄録

分散染料の高分子固体中への拡散挙動を明らかにすることを目的とした。そのため試料として超分子構造の明らかな多孔性再生セルロース中空糸モジュールPLANOVA^<TM>を採用した。平均孔径10,15,35および75nmの4種を用い特に35nmの試料を中心に拡散係数を測定した。分散染料としてDisperse Orange 3 (C.I. 11080), Disperse Orange 1 (C.I. 11005), Disperse Red 1 (C.I. 11100)の3種のアゾ系染料を選定した。分散染料の水溶液中での溶解状態を変化させるため(1)水溶液中に溶解および分散した溶液(分散染料をそのまま水に溶解させた溶液), (2)溶液(1)を平均孔径15nmのPLANOVA15で濾過し粒子成分を除去して得られる分子状に溶解した溶液, (3)溶液(2)にベンゼンを飽和させた溶液, の3種の溶液を作製した。拡散係数Dは定常法により, 298,313,333 Kで測定し, 拡散の見掛けの活性化エネルギーΔH_aをDの温度依存性より算出した。分配係数Kは残液法で溶液中の染料濃度より算出した。膜透過率φは一定の膜間差圧下でのデッドエンド型の濾過前後での染料濃度より算出した。染料濃度は可視分光光度計で染料の最大吸収波長における吸光度より決定した。その結果(1) Kは1∿20の間にあり, 分散染料は再生セルロースにほとんど吸着しない。溶液(2)の場合がKは最も小さく, 溶液(1) と(3) でのKはほぼ等しい(K≒10), (2) 孔中を拡散するには水溶液中に溶解した染料分子のみである。拡散後の溶液には分子状に溶解した成分のみで分散粒子の状態の成分はない, (3) Dの値には溶液(1)<溶液(2) ≒溶液(3)の関係があった, (4) 孔中の分散染料の拡散の見掛けの活性化エネルギーΔH_aは-12∿12kJ/molにあり水分子の熱運動が分散染料の孔中の拡散を支配している, (5) Kを考慮し, かつ溶解成分の比率αを考慮したデータ解析, 水中での中空糸膜の空孔率εを用いて算出されるDの理論値(=(ε・D_p/(K・曲路率))(立体因子)(粘性因子), D_pはStokes-Einsteinの式で与えられる)は実測のD値の約10倍である, (6) 溶液(3) を用いれば濃度勾配に逆らった染料分子の拡散が起こる場合がある。これらの結果より分散染料が高分子固体中の孔を拡散するのは, 溶解した成分のみであり, 分散粒子の存在は拡散を妨げるように働くと結論される。また孔中の拡散においても貫通孔ではない高分子固体内部の微小孔への分散染料分子が滞留する効果を考慮する必要があると考えられる。

We intended to interpret the diffusional behavior of a disperse dye into a polymer solid. The porous regenerated cellulose hollow fibers whose pore structure was well-characterized were employed. The mean pore sizes of the fibers and their filter module PLANOVA were 10,15,35 and 75nm. The diffusional properties of PLANOVA 35 with the mean pore size of 35nm was investigated mainly. The disperse dyes employed were Disperse Orange 3 (C.I. 11080), Disperse Orange 1 (C.I. 11005), and Disperse Red 1 (C.I. 11100). In order to change the dispersion state of the disperse dyes in the aq. solution, three types of the solutions named as Sol. 1,Sol. 2,and Sol. 3 were prepared : Sol. 1; the aq. solution containing molecularly dissolved dye molecules and its disperse particles with more than 20nm in size. Sol. 2; the aq. solution after filtration of Sol. 1 using PLANOVA 15 whose mean pore size was 15nm. Sol. 3; the aq. solution prepared from Sol. 2 by adding benzene in saturation. The diffusion coefficient D was obtained through the stationary state method. The apparent activation energy ΔH_a was evaluated by the Arrehnius plots of D at 298,313,and 333K. The partition coefficient K was calculated from the concentrations of the dyes in the solutions before immersing the fibers and after. The membrane permeability φ was obtained by the ratio of the dye concentration before and after filtration performed by the dead end filtration under the constant transmembrane pressure. The concentration of dyes was determined by measuring the optical absorbance at the wave length where the absorption of the dye showed a maximum. The results were (1) The regenerated cellulose absorbed the dye in the low level and K distributed between 1 and 20. The value of K showed slight difference among solutions, for example, K for Soln. 2 was ca. 1.0 and those of Solns. 1 and 3 were ca. 10. (2) The component of the dyes which could diffuse through pores in the fiber was only molecularly dissolved dye molecules. Then the solution after the diffusion contains only the dye molecules in the dissolved state. (3) As for the experimental D values, the following relation was obtained, Soln. 1<Soln. 2≒Soln. 3. (4) The ΔH_a value of the diffusion in a pore ranged between -12 and 12 kJ/mol indicating that the diffusional motion of water molecules was dominant factor for the diffusion of dyes in a pore. (5) The experimental value of D was about 1/10 of the theoretical value D_c obtained through the following equation; D_c=(εD_p/Kτ) (steric factor)x (viscous factor), where ε was the porosity of the hollow fiber membrane, τ was tortuous factor, D_p was the diffusion coefficient in the solution without pores and was calculated through the Stokes-Einstein's eq. (6) In the specially designed boundary condition, the diffusion of the dye molecules in Soln. 3 against the concentration gradient could be realized. We concluded that the diffusible component of the disperse dyes was only the molecularly dissolved component and the coexistence of the associated aggregates of the dye molecules disturbed the diffusional flow. There remained the necessity of taking into the consideration the novel factor named as the retantion time into the capillary model for the diffusion of the molecularly dissolved dispersion dye.

収録刊行物

  • 福岡女子大学人間環境学部紀要

    福岡女子大学人間環境学部紀要 29, 13-19, 1998-02-25

    福岡女子大学

各種コード

  • NII論文ID(NAID)
    110000485981
  • NII書誌ID(NCID)
    AN1052367X
  • 本文言語コード
    JPN
  • 雑誌種別
    大学紀要
  • ISSN
    13414909
  • NDL 記事登録ID
    6404171
  • NDL 雑誌分類
    ZE16(社会・労働--家事・家政--学術誌)
  • NDL 請求記号
    Z6-391
  • データ提供元
    NDL  NII-ELS 
ページトップへ