NAVIER-STOKES EQUATIONS IN THE BESOV SPACE NEAR $ L^\infty $ AND $ BMO $ NAVIER-STOKES EQUATIONS IN THE BESOV SPACE NEAR L∞ AND BMO

Access this Article

Search this Article

Author(s)

Abstract

We prove a local existence theorem for the Navier-Stokes equations with the initial data in $ B_{\infin,\infin}^{0} $ containing functions which do not decay at infinity. Then we establish an extension criterion on our local solutions in terms of the vorticity in the homogeneous Besov space $ \middot{B}_{\infin,\infin}^{0} $.

We prove a local existence theorem for the Navier-Stokes equations with the initial data in <i>B</i><sup>0</sup><sub>∞,∞</sub> containing functions which do not decay at infinity. Then we establish an extension criterion on our local solutions in terms of the vorticity in the homogeneous Besov space <i>B</i><sup>·0</sup><sub>∞,∞</sub>.

Journal

  • Kyushu Journal of Mathematics

    Kyushu Journal of Mathematics 57(2), 303-324, 2003

    Kyushu University

Codes

  • NII Article ID (NAID)
    110001263203
  • NII NACSIS-CAT ID (NCID)
    AA10994346
  • Text Lang
    ENG
  • Article Type
    Departmental Bulletin Paper
  • ISSN
    1340-6116
  • Data Source
    NII-ELS  IR  J-STAGE 
Page Top