不確定性原理・保存法則・量子計算  [in Japanese] Uncertainty Principle, Conservation Laws, and Quantum Computing  [in Japanese]

Search this Article

Author(s)

Abstract

古典力学は,過去の状態を完全に知れば,それ以後の物理量の値を完全に知りうるという決定論的世界観を導いたが,量子力学は,測定行為自体が対象を乱してしまい,対象の状態を完全に知ることはできないことを示した.ハイゼンベルクは,不確定性原理により,このことを端的にかつ数量的に示すことに成功したといわれてきたが,測定がどのように対象を乱すのかという点について,これまでの関係式は十分に一般的ではなかった.最近の研究により,この難点を解消した新しい関係式が発見され,これまで個別に得られてきた量子測定の精度や量子情報処理の効率の量子限界を統一的に導く第一原理の役割を果たすことが明らかになってきた.

Classical mechanics leads to the deterministic view on the world, according to which the complete knowledge on the past state derives the complete knowledge on future values of physical quantities, whereas quantum mechanics shows that it is impossible to know the past state completely since measurements disturb the state of the measured object. It has long been said that Heisenberg succeeded in expressing this as a simple quantitative relation by his uncertainty principle. However, the relation was not general enough in expressing the quantitative relation between the measurement noise and disturbance. Recently, a new relation was found to solve this problem, and it has become clear that the new relation plays a role of the first principle to derive various quantum limits, some of which are obtained individually, on quantum measurements and quantum information processing in a unified treatment. This paper surveys the above development on the new formulation of uncertainty principle and its applications to quantum computing.

Journal

  • 日本物理學會誌

    日本物理學會誌 59(3), 157-165, 2004-03-05

    The Physical Society of Japan (JPS)

References:  38

  • <no title>

    HEISENBERG W.

    Z. Phys. 43, 172, 1927

    Cited by (1)

  • <no title>

    KENNARD E. H.

    Z. Phys. 44, 326, 1927

    Cited by (2)

  • <no title>

    ROBERTSON H. P.

    Phys. Rev. 34, 163, 1929

    Cited by (2)

  • <no title>

    VON NEUMANN J.

    Mathematische Grundlagen der Quantenmechanik, 1932

    Cited by (4)

  • <no title>

    BOHM D.

    Quantum Theory, 1951

    Cited by (7)

  • <no title>

    BRAGINSKY V. B.

    Usp. Fiz. Nauk 114, 41, 1974

    Cited by (1)

  • <no title>

    BRAGINSKY V. B.

    Sov. Phys. Usp. 17, 644, 1975

    Cited by (1)

  • <no title>

    CAVES C. M.

    Rev. Mod. Phys. 52, 341, 1980

    Cited by (3)

  • <no title>

    OZAWA M.

    Phys. Rev. Lett. 60, 385, 1988

    Cited by (3)

  • <no title>

    OZAWA M.

    Squeezed and Nonclassical Light, 1989

    Cited by (1)

  • <no title>

    MADDOX J.

    Nature (London) 331, 559, 1988

    Cited by (1)

  • <no title>

    OZAWA M.

    Quantum Aspects of Optical Communications, 1991

    Cited by (1)

  • <no title>

    OZAWA M.

    Phys. Rev. A 67, 042105, 2003

    Cited by (1)

  • <no title>

    OZAWA M.

    Phys. Lett. A 318, 21, 2003

    Cited by (1)

  • <no title>

    NIELSEN M. A.

    Quantum Computation and Quantum Information, 2000

    Cited by (33)

  • <no title>

    WIGNER E. P.

    Z. Phys. 133, 101, 1952

    Cited by (1)

  • <no title>

    ARAKI H.

    Phys. Rev. 120, 622, 1960

    Cited by (1)

  • <no title>

    WIGNER E. P.

    Quantum Theory and Measurement, 1983

    Cited by (1)

  • <no title>

    OZAWA M.

    LANL quant-ph/0310071, 2003

    Cited by (1)

  • <no title>

    OZAWA M.

    Phys. Rev. Lett. 88, 050402, 2002

    Cited by (1)

  • <no title>

    YANASE M. M.

    Phys. Rev. 123, 666, 1961

    Cited by (1)

  • <no title>

    OZAWA M.

    Phys. Rev. Lett. 89, 057902, 2002

    Cited by (2)

  • <no title>

    VAN ENK S. J.

    Quantum Inf. Comput. 2, 1, 2002

    Cited by (1)

  • <no title>

    ITANO W. M.

    Phys. Rev. A 68, 046301, 2003

    Cited by (1)

  • <no title>

    VAN ENK S. J.

    Phys. Rev. A 68, 046302, 2003

    Cited by (1)

  • <no title>

    GEA-BANACLOCHE J.

    Phys. Rev. A 68, 046303, 2003

    Cited by (1)

  • <no title>

    DAVIES E. B.

    Quantum Theory of Open Systems, 1976

    Cited by (9)

  • <no title>

    GEA-BANACLOCHE J.

    Phys. Rev. Lett. 89, 022308, 2002

    Cited by (1)

  • <no title>

    OZAWA M.

    Phys. Rev. A 62, 062101, 2000

    Cited by (4)

  • <no title>

    OZAWA M.

    Phys. Rev. A 63, 032109, 2001

    Cited by (3)

  • <no title>

    OZAWA M.

    Phys. Lett. A 299, 1, 2002

    Cited by (3)

  • <no title>

    YUEN H. P.

    Phys. Rev. Lett. 51, 719, 1983

    Cited by (2)

  • <no title>

    CAVES C. M.

    Phys. Rev. Lett. 54, 2465, 1985

    Cited by (4)

  • <no title>

    OZAWA M.

    Phys. Rev. A 41, 1735, 1990

    Cited by (4)

  • <no title>

    OZAWA M.

    Phys. Lett. A 282, 336, 2001

    Cited by (3)

  • <no title>

    OZAWA M.

    Phys. Rev. Lett. 67, 1956, 1991

    Cited by (2)

  • <no title>

    GEA-BANACLOCHE J.

    Rev. Rev. A 65, 022308, 2002

    Cited by (1)

  • Quantum measuring processes of continuous observables

    OZAWA M.

    J. Math. Phys. 25, 79-87, 1984

    Cited by (5)

Cited by:  1

  • Analysis of Sampling Circuit  [in Japanese]

    ARAI Miho , SHIMIZU Isao , KUBO Kazuyoshi , KOBAYASHI Haruo

    電気学会研究会資料. ECT, 電子回路研究会 2013(32), 51-58, 2013-03-07

    References (12)

Codes

  • NII Article ID (NAID)
    110002069559
  • NII NACSIS-CAT ID (NCID)
    AN00196952
  • Text Lang
    JPN
  • Article Type
    Journal Article
  • ISSN
    00290181
  • NDL Article ID
    6877292
  • NDL Source Classification
    ZM35(科学技術--物理学)
  • NDL Call No.
    Z15-13
  • Data Source
    CJP  CJPref  NDL  NII-ELS 
Page Top