ブートストラップによる低人手コスト日本語固有表現抽出 Low Manual Cost Japanese Named Entity Recognition by Bootstrapping

この論文にアクセスする

この論文をさがす

著者

抄録

本論文では,人手によって作成された少量の初期固有表現リストと大量の人手未解析コーパスから,ブートストラップにより日本語固有表現抽出規則を学習する手法を提案し,その実験的評価結果を報告する.実験の結果,ブートストラップのサイクルを経るにしたがって,初期固有表現リストによる固有表現抽出の性能(F値)が徐々に改善されるという結果が得られた.この結果により,少量の初期知識と大量の人手未解析コーパスを用いたブートストラップ法のアプローチが,日本語の固有表現のまとめ上げの問題においても,ある程度有効に機能することが確認できた.Approaches to named entity recognition that rely on hand-crafted rules and/or supervised learning techniques have limitations in terms of their portability into new domains as well as in the robustness over time. For the purpose of overcoming those limitations, this paper evaluates named entity chunking and classification techniques in Japanese named entity recognition in the context of minimally supervised learning. This experimental evaluation demonstrates that the minimally supervised learning method proposed here improved the performance of the seed knowledge on named entity chunking and classification. We also investigated the correlation between performance of the minimally supervised learning and the sizes of the training resources such as the seed set as well as the unlabeled training data.

Approaches to named entity recognition that rely on hand-crafted rules and/or supervised learning techniques have limitations in terms of their portability into new domains as well as in the robustness over time. For the purpose of overcoming those limitations, this paper evaluates named entity chunking and classification techniques in Japanese named entity recognition in the context of minimally supervised learning. This experimental evaluation demonstrates that the minimally supervised learning method proposed here improved the performance of the seed knowledge on named entity chunking and classification. We also investigated the correlation between performance of the minimally supervised learning and the sizes of the training resources such as the seed set as well as the unlabeled training data.

収録刊行物

  • 情報処理学会研究報告自然言語処理(NL)

    情報処理学会研究報告自然言語処理(NL) 2000(86(2000-NL-139)), 9-16, 2000-09-21

    一般社団法人情報処理学会

参考文献:  17件中 1-17件 を表示

被引用文献:  3件中 1-3件 を表示

各種コード

  • NII論文ID(NAID)
    110002935226
  • NII書誌ID(NCID)
    AN10115061
  • 本文言語コード
    JPN
  • 資料種別
    Technical Report
  • ISSN
    09196072
  • NDL 記事登録ID
    5741451
  • NDL 雑誌分類
    ZM13(科学技術--科学技術一般--データ処理・計算機)
  • NDL 請求記号
    Z14-1121
  • データ提供元
    CJP書誌  CJP引用  NDL  NII-ELS  IPSJ 
ページトップへ