Charge-Transfer Excitations in One-Dimensional Dimerized Mott Insulators

  • Maeshima Nobuya
    Department of Chemistry, Tohoku University Institute for Molecular Science
  • Yonemitsu Kenji
    Institute for Molecular Science Department of Functional Molecular Science, Graduate University for Advanced Studies

この論文をさがす

抄録

We investigate the optical properties of one-dimensional (1D) dimerized Mott insulators using the 1D dimerized extended Hubbard model. Numerical calculations and a perturbative analysis from the decoupled-dimer limit clarify that there are three relevant classes of charge-transfer (CT) states generated by photoexcitation: interdimer CT unbound states, interdimer CT exciton states, and intradimer CT exciton states. This classification is applied to understanding the optical properties of an organic molecular material, 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA), which is known for its photoinduced transition from the dimerized spin-singlet phase to the regular paramagnetic phase. We conclude that the lowest photoexcited state of TTTA is the interdimer CT exciton state and the second lowest state is the intradimer CT exciton state.

収録刊行物

被引用文献 (7)*注記

もっと見る

参考文献 (76)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ