Recent Advances in Atmospheric Radar Study

Search this Article

Author(s)

Abstract

With certain limitations, atmospheric radars generally called MST (mesosphere, stratosphere, and troposphere) radars or ST (stratosphere and troposphere) radars are capable of continuously monitoring three-dimensional winds, waves, turbulence, and atmospheric stability over the wide altitude range 1-100 km in the Earth's atmosphere. In particular, direct measurement of venical wind velocity over such a wide attitude range is possible only with MST radars. Their time resolution of about 1 min and attitude resolution of 75-150 m are unequalled by conventional instruments (e.g., rawinsondes and rocketsondes), making it possible for MST radars to quantitatively investigate the small-scale atmospheric gravity waves that are considered to play important roles in the dynamics of the Earth's atmosphere. It is also noted that the vertical flux of horizontal momentum can be measured with high accuracy by MST radars. MST radars in the VHF band have the capability to discriminate echoes from clear air and precipitation particles, while microwave meteorological radars generally detect only precipitation echoes. In the last three decades, this excellent capability has been used extensively to study various dynamical disturbances in the Earth's atmosphere, developing new frontiers of atmospheric research on, primarily, mesoscale and micro-scale phenomena. In the present paper, these advances are reviewed briefly.

Journal

  • Journal of the Meteorological Society of Japan. Ser. II

    Journal of the Meteorological Society of Japan. Ser. II 85(3), 215-239, 2007-07-25

    Meteorological Society of Japan

References:  181

  • 1 / 2
  • 1 / 2

Cited by:  2

Codes

  • NII Article ID (NAID)
    110006366634
  • NII NACSIS-CAT ID (NCID)
    AA00702524
  • Text Lang
    ENG
  • Article Type
    Journal Article
  • ISSN
    00261165
  • NDL Article ID
    8851829
  • NDL Source Classification
    ZM43(科学技術--地球科学--気象)
  • NDL Call No.
    Z54-J645
  • Data Source
    CJP  CJPref  NDL  NII-ELS  J-STAGE  NDL-Digital 
Page Top