Application of Artificial Neural Network Models to the Estimation of Chlorophyll a Concentration in Lake Koyama, Tottori Prefecture, Japan

Access this Article

Search this Article

Author(s)

    • SAI Koji
    • Department of Bioproduction Environmental Science, Faculty of Agriculture, Kyushu University
    • HARADA Masayoshi
    • Department of Bioproduction Environmental Science, Faculty of Agriculture, Kyushu University
    • YOSHIDA Isao
    • Department of Bioproduction Environmental Science, Faculty of Agriculture, Kyushu University
    • HIRAMATSU Kazuaki
    • Department of Bioproduction Environmental Science, Faculty of Agriculture, Kyushu University
    • MORI Makito
    • Department of Bioproduction Environmental Science, Faculty of Agriculture, Kyushu University

Abstract

An artificial neural network model with three-layer structure was applied to estimate chlorophyll a concentration in a lake located in Tottori Prefecture, Japan. First, input variables, which resulted in high calibration accuracy, were searched to examine the optimal network structure. The calibration accuracy was highest when input variables were set to TN, TP, DO, water temperature, solar radiation, air temperature, wind velocity, and Wedderburn number. This result means that the model incorporated the relationship between chlorophyll a concentration and the meteorological, hydraulic, and aquatic factors into the network structure. The adaptability of the estimation of chlorophyll a concentration was examined. As a result, chlorophyll a concentration could not be sufficiently estimated. To improve estimation accuracy, the network structure was reconstructed by considering the time history of the variation of the meteorological and water quality data for the previous 24 hours and incorporating such data into the input variables. The result showed that the estimation accuracy was remarkably improved.

Journal

  • Journal of the Faculty of Agriculture, Kyushu University

    Journal of the Faculty of Agriculture, Kyushu University 52(2), 405-409, 2007-10-29

    Faculty of Agriculture, Kyushu University

Codes

  • NII Article ID (NAID)
    110006412609
  • NII NACSIS-CAT ID (NCID)
    AA00697606
  • Text Lang
    ENG
  • Article Type
    departmental bulletin paper
  • ISSN
    0023-6152
  • Data Source
    NII-ELS  IR 
Page Top