Molecular Dynamics Simulation of the Chemical Interaction between Hydrogen Atom and Graphene

Search this Article

Author(s)

Abstract

We report the chemical interaction between a single hydrogen atom and graphene via a classical molecular dynamics simulation using a modified Brenner empirical bond order potential. Three interactions, that is, adsorption, reflection, and penetration, are observed in our simulation. The rates of the interactions depend on the incident energy of the hydrogen atom and the graphene temperature. This dependence can be explained by the following mechanisms: (1) The hydrogen atom experiences a repulsive force due to π electrons. (2) The graphene adsorbs the hydrogen atom and transforms its structure to an "overhang" configuration such as the sp^3 state. (3) The expansion of the six-membered ring causes the loss of the kinetic energy of the hydrogen atom during penetration.

Journal

  • Journal of the Physical Society of Japan

    Journal of the Physical Society of Japan 77(11), "114602-1"-"114602-13", 2008-11-15

    The Physical Society of Japan (JPS)

References:  26

  • <no title>

    ROTH J.

    Nucl. Fusion 44, L21, 2004

    Cited by (1)

  • <no title>

    SAGARA A.

    J. Nucl. Mater. 313-316, 1, 2003

    Cited by (1)

  • <no title>

    SALONEN E.

    Phys. Rev. B 60, R14005, 1999

    Cited by (1)

  • <no title>

    SALONEN E.

    Phys. Rev. B 63, 195415, 2001

    Cited by (1)

  • <no title>

    ALMAN D. A.

    J. Nucl. Mater. 313-316, 182, 2003

    Cited by (1)

  • <no title>

    MARIAN J.

    Phys. Scr. T 124, 65, 2006

    Cited by (1)

  • <no title>

    BOEHM H.-P.

    Pure Appl. Chem. 66, 1893, 1994

    Cited by (1)

  • <no title>

    PITCHERY C. S.

    Plasma Phys. Control. Fusion 39, 779, 1997

    Cited by (1)

  • <no title>

    ITO A.

    J. Plasma Phys. 72, 805, 2006

    Cited by (1)

  • <no title>

    BRENNER D. W.

    J. Phys. : Condens. Matter 14, 783, 2002

    Cited by (1)

  • <no title>

    SUZUKI M.

    J. Math. Phys. 26, 601, 1985

    Cited by (1)

  • <no title>

    NAKAMURA H.

    Mol. Simulation 33, 121, 2007

    Cited by (1)

  • <no title>

    ITO A.

    Thin Solid Films 516, 6553, 2008

    Cited by (1)

  • <no title>

    SHA X.

    Surf. Sci. 496, 318, 2002

    Cited by (1)

  • <no title>

    JELOAICIA L.

    Chem. Phys. Lett. 300, 157, 1999

    Cited by (1)

  • <no title>

    KOGA T.

    J. Korean Phys. Soc. 49, S52, 2006

    Cited by (1)

  • <no title>

    NAKAMURA H.

    Contrib. Plasma Phys. 48, 265, 2008

    Cited by (1)

  • <no title>

    MECH B. V.

    J. Nucl. Mater. 241-243, 1147, 1997

    Cited by (1)

  • <no title>

    MECH B. V.

    J. Nucl. Mater. 255, 153, 1998

    Cited by (1)

  • <no title>

    MORSE P. M.

    Phys. Rev. 34, 57, 1929

    Cited by (1)

  • <no title>

    ABELL G. C.

    Phys. Rev. B 31, 6184, 1985

    Cited by (1)

  • <no title>

    TERSOFF J.

    Phys. Rev. B 37, 6991, 1988

    Cited by (1)

  • <no title>

    TERSOFF J.

    Phys. Rev. B 39, 5566, 1989

    Cited by (1)

  • <no title>

    BRENNER D. W.

    Phys. Rev. B 42, 9458, 1990

    Cited by (1)

  • <no title>

    NAKANO T.

    Nucl. Fusion 42, 689, 2002

    Cited by (3)

  • <no title>

    ROTH J.

    J. Nucl. Mater. 266-269, 51, 1999

    Cited by (6)

Codes

  • NII Article ID (NAID)
    110006983746
  • NII NACSIS-CAT ID (NCID)
    AA00704814
  • Text Lang
    ENG
  • Article Type
    ART
  • ISSN
    00319015
  • NDL Article ID
    9706361
  • NDL Source Classification
    ZM35(科学技術--物理学)
  • NDL Call No.
    Z53-A404
  • Data Source
    CJP  NDL  NII-ELS 
Page Top