極小値が単峰列で単峰領域幅が等しい一変数多峰関数の大域的最適化法  [in Japanese] Global Optimization Method for a Multimodal Function whose Local Minimal Values have an Unimodal Sequene and Widths of Unimodal Regions are Equal  [in Japanese]

Search this Article

Author(s)

Abstract

孤立極小点を有する一変数多峰関数の大域的最適(最小)化問題において,関数の極小値が(下へ)単峰列で各極小点の単峰領域幅が等しい関数を定義・考察する.さらに,その関数の大域的最小点を求める手法を提案し,簡単な数値実験で提案手法の有効性を示す.次に,変数分離可能で単峰領域幅が等しい多変数多峰の目的関数を矩形探索領域上で最小化する問題に対して,提案手法を繰り返し用いる大域的最適化手法を与え,数値実験の結果から本手法が非常に効率的かつ高信頼性で最小点を見い出せることを示す.

In global optimization problems of an univariate multimodal function, we define and investigate functions whose local minimal values have an unimodal sequence and all of widths of unimodal regions are equal. Moreover, we propose an method for finding a global minimum of functions on a rectangular searching region. and show effectiveness of a proposed method by a simple numerical experiment.

Journal

  • IEICE technical report

    IEICE technical report 109(269), 79-84, 2009-11-04

    The Institute of Electronics, Information and Communication Engineers

References:  4

Cited by:  1

Codes

  • NII Article ID (NAID)
    110007504853
  • NII NACSIS-CAT ID (NCID)
    AN10060800
  • Text Lang
    JPN
  • Article Type
    Journal Article
  • ISSN
    09135685
  • NDL Article ID
    10478497
  • NDL Source Classification
    ZN33(科学技術--電気工学・電気機械工業--電子工学・電気通信)
  • NDL Call No.
    Z16-940
  • Data Source
    CJP  CJPref  NDL  NII-ELS 
Page Top