CARLESON INEQUALITIES ON PARABOLIC BERGMAN SPACES

Access this Article

Search this Article

Author(s)

Abstract

We study Carleson inequalities on parabolic Bergman spaces on the upper half space of the Euclidean space. We say that a positive Borel measure satisfies a $(p,q)$-Carleson inequality if the Carleson inclusion mapping is bounded, that is, $q$-th order parabolic Bergman space is embedded in $p$-th order Lebesgue space with respect to the measure under considering. In a recent paper [6], we estimated the operator norm of the Carleson inclusion mapping for the case $q$ is greater than or equal to $p$. In this paper we deal with the opposite case. When $p$ is greater than $q$, then a measure satisfies a $(p,q)$-Carleson inequality if and only if its averaging function is $\sigma$-th integrable, where $\sigma$ is the exponent conjugate to $p/q$. An application to Toeplitz operators is also included.

Journal

  • Tohoku Mathematical Journal, First Series

    Tohoku Mathematical Journal, First Series 62(2), 269-286, 2010

    Tohoku University

Codes

Page Top