Ruled Lagrangian submanifolds in complex Euclidean 3-space

Access this Article

Search this Article

Author(s)

    • Kimura Makoto Kimura Makoto
    • 島根大学総合理工学部数理・情報システム学科 Shimane University, Interdisciplinary Faculty of Science and Engineering, Department of Mathematics and Computer Science

Abstract

We show that if ruled Lagrangian submanifold M^3 in 3-dimensional complex Euclidean space is Einstein, then it is flat, provided that the map which gives direction of each ruling has constant rank. Also we give explicit construction of flat ruled Lagrangian submanifolds M^3 in C^3, from some horizontal curves in S^5, such that M^3 is neither totally geodesic nor Riemannian product Σ×R.

Journal

  • Memoirs of the Faculty of Science and Engineering Shimane University Ser. B Mathematical Science

    Memoirs of the Faculty of Science and Engineering Shimane University Ser. B Mathematical Science (44), 17-26, 2011-03

    Shimane University

Codes

  • NII Article ID (NAID)
    110008138795
  • NII NACSIS-CAT ID (NCID)
    AA11157123
  • Text Lang
    ENG
  • Article Type
    departmental bulletin paper
  • Journal Type
    大学紀要
  • ISSN
    13427121
  • NDL Article ID
    11053527
  • NDL Source Classification
    ZM2(科学技術--科学技術一般--大学・研究所・学会紀要)
  • NDL Call No.
    Z63-C643
  • Data Source
    NDL  NII-ELS  IR 
Page Top