造影CT画像を用いた肺血栓塞栓症検出アルゴリズムの検討  [in Japanese] Developments of Thrombosis Detection Algorithm using the Contrast Enhanced CT Images  [in Japanese]

Search this Article

Author(s)

    • 大屋 淳 OYA Jun
    • 徳島大学大学院先端技術科学教育部 System Innovation Engineering Graduate School of Advanced Technology and Science The University of Tokushima
    • 鈴木 秀宣 SUZUKI Hidenobu
    • 徳島大学大学院ソシオテクノサイエンス研究部 Institute of Technology and Science The University of Tokushima
    • 仁木 登 NIKI Noboru
    • 徳島大学大学院ソシオテクノサイエンス研究部 Institute of Technology and Science The University of Tokushima
    • 田邊 信宏 TANABE Nobuhiro
    • 千葉大学大学院医学研究院呼吸器内科 Department of Respirology Graduate School of Medicine, Chiba University

Abstract

肺血栓塞栓症の診断に際しては,特異的な臨床症状はなく,画像診断が果たす役割は大きい.特に造影CTは,低侵襲的な診断法であり,肺動脈内の血栓が造影効果のない低濃度として検出できる.また,肺野の濃度変化,肺血管影減弱の描出も可能であることから肺血栓塞栓症の診断に不可欠である.画像診断支援においては,肺血栓塞栓症に関連する肺動脈・肺静脈の分類を行い,肺血管を定量的に解析することが望まれている.本報告では,半自動で抽出した肺動脈を用いて構造解析を行い,肺動脈幹径を計測し,正常例との比較を行うことで本手法の有効性を示す.

In the diagnosis of thrombosis with no specific clinic symptoms, diagnostic imaging plays a greater role. Particularly, contrast Enhanced CT is low invasive diagnostics, and the thrombus in the pulmonary artery can be detected as a low density without the contrast effect. Moreover, because describing the change of concentration in lung field and the decline in lung blood vessel shadow is also possible, it is indispensable to diagnose thrombosis. As the image diagnosis support, it is necessary to classify the pulmonary artery and vein that relate to the thrombosis, and to analyze the lung blood vessel quantitatively. In this study, the effectiveness of the method is shown by analyzing the structure by using the extracted pulmonary artery through semi-automated method, measuring the pulmonary trunk diameter, and comparing it with a normal case.

Journal

  • IEICE technical report

    IEICE technical report 110(364), 189-192, 2011-01-12

    The Institute of Electronics, Information and Communication Engineers

References:  8

Codes

  • NII Article ID (NAID)
    110008675427
  • NII NACSIS-CAT ID (NCID)
    AA11370335
  • Text Lang
    JPN
  • Article Type
    ART
  • ISSN
    09135685
  • NDL Article ID
    10970259
  • NDL Source Classification
    ZN33(科学技術--電気工学・電気機械工業--電子工学・電気通信)
  • NDL Call No.
    Z16-940
  • Data Source
    CJP  NDL  NII-ELS 
Page Top