GaAsN気相エピタキシーにおける混晶組成の理論的検討  [in Japanese] Theoretical Analysis for the Composition of GaAsN Grown by Vapor Phase Epitaxy  [in Japanese]

Search this Article

Author(s)

Abstract

多接合太陽電池用材料への応用が期待されるGaAs_<1-x>N_xの気相エピタキシャル成長について,熱力学解析および成長表面の第一原理計算により窒素の取り込み過程を理論的に検討した.窒素の取り込みはGe基板からの格子拘束の影響により抑制されるが,原料ガス中のIII族ガス分圧を上げることにより促進されることが示された.また水素雰囲気下における成長表面の第一原理計算により,窒素は水素が吸着した結晶表面のサイトに選択的に取り込まれやすいことが明らかになり,結晶成長時に窒素と共に水素も結晶中に引き込まれて欠陥を生じる原因となっている可能性が示唆された.これらの理論的解析結果は,実験的に高品質の薄膜を成長させる際の指標となり得る.

Theoretical analysis for the epitaxial growth of GaAs_<1-x>N_x from vapor phase was performed by thermodynamic analysis and the first-principles calculations for growth surface. The calculated results suggest that the incorporation of nitrogen is suppressed by the effect of the lattice constraint from Ge substrate, and is promoted by increasing the input partial pressure of group-III element. And first-principles-based calculations for the growth surface under H_2 atmosphere show that nitrogen is easier to substitute for As in the surface site bonded with hydrogen, which could be the origin of H-related defects in a thin film. These results obtained by the theoretical analysis provide information on the suitable growth conditions for the growth of this material with high quality.

Journal

  • Journal of the Japanese Association for Crystal Growth

    Journal of the Japanese Association for Crystal Growth 38(2), 128-136, 2011-07-31

    The Japanese Association for Crystal Growth (JACG)

References:  24

  • <no title>

    高本達也

    日本結晶学会誌 36, 290, 2009

    Cited by (1)

  • <no title>

    BOUZAZI B.

    Jpn. J. Appl. Phys. 49, 121001, 2010

    Cited by (1)

  • <no title>

    HO I.

    J. Cryst. Growth 178, 1, 1997

    Cited by (1)

  • <no title>

    ONABE K.

    Phys. Status Solidi A 176, 231, 1999

    Cited by (1)

  • <no title>

    SUZUKI H.

    Thin Solid Films 515, 5008, 2007

    Cited by (1)

  • <no title>

    NISHIMURA K.

    Physica, B 401-402, 343, 2007

    Cited by (1)

  • <no title>

    KOUKITU A.

    J. Cryst. Growth 170, 306, 1997

    Cited by (1)

  • <no title>

    NEUGEBAUER J.

    Phys. Rev., B 51, 10568, 1995

    Cited by (1)

  • <no title>

    ITO T.

    Appl. Surf. Sci. 256, 1218, 2009

    Cited by (1)

  • <no title>

    YAYAMA T.

    Jpn. J. Appl. Phys. 48, 088004, 2009

    Cited by (1)

  • <no title>

    SCHLENKLER D.

    J. Cryst. Growth 196, 67, 1999

    Cited by (1)

  • <no title>

    KANGAWA Y.

    J. Cryst Growth 220, 401, 2000

    Cited by (1)

  • <no title>

    MATSUOKA T.

    Appl. Phys. Lett. 81, 1246, 2002

    Cited by (1)

  • <no title>

    HIRANO T.

    MOPAC Manual, 1993

    Cited by (1)

  • <no title>

    DELLEY B.

    J. Chem. Phys. 113, 7756, 2000

    Cited by (1)

  • <no title>

    PERDEW J. P.

    Phys. Rev. Lett. 77, 3865, 1996

    Cited by (1)

  • <no title>

    KUMAGAI Y.

    J. Cryst. Growth 272, 341-347, 2004

    Cited by (1)

  • <no title>

    ABU-FARSAKH H.

    Phys, Rev., B 79, 155311, 2009

    Cited by (1)

  • <no title>

    JENICHEN A.

    Phys. Stat. Sol., B 242, 2820, 2005

    Cited by (1)

  • <no title>

    ISHIZAKI H.

    Appl. Surf. Sci. 244, 186, 2005

    Cited by (1)

  • <no title>

    SAITO K.

    Thin Solid Films 516, 3517, 2008

    Cited by (1)

  • <no title>

    SUDA T.

    J. Cryst. Growth 258, 277, 2003

    Cited by (3)

  • <no title>

    DELLY B.

    J. Chem. Phys 92, 508, 1990

    Cited by (18)

  • <no title>

    JANOTTI A.

    Phys. Rev., B 67, 161201, 2003

    Cited by (2)

Codes

  • NII Article ID (NAID)
    110008686950
  • NII NACSIS-CAT ID (NCID)
    AN00188386
  • Text Lang
    JPN
  • Article Type
    REV
  • ISSN
    03856275
  • NDL Article ID
    11196074
  • NDL Source Classification
    ZM35(科学技術--物理学)
  • NDL Call No.
    Z15-339
  • Data Source
    CJP  NDL  NII-ELS 
Page Top