エピタキシャルAlN膜のラマン散乱分光による評価  [in Japanese] Raman Scattering Spectroscopy for Epitaxial AlN Films  [in Japanese]

Search this Article

Author(s)

Abstract

AlNはワイドバンドギャップや高温での安定性などから、深紫外領域の発光デバイスをはじめ、次世代の種々半導体デバイスへの応用が期待されている。しかしながら、サファイアなど異種下地基板上のAlN成長では、格子定数差や熱膨張係数差による応力発生の問題がある。本研究では、サファイア基板、6H-SiC基板上に高品質なAlN薄膜を作製し、高分解能X線回折、ラマン散乱分光測定から格子歪みや応力の解析を行った。その結果、(10-12)回折のXRC FWHMが小さくなるにつれE2(high)ラマンピークシフトが大きくなり、圧縮応力が増大することから、転位が応力を緩和していることがわかった。さらに、得られた結果から2軸性応力係数kが求められ、その値は-4.04±0.3 cm^<-1>/GPaであった。

Due to its wide band-gap energy and the outstanding thermal and chemical stability, aluminum nitride (AlN) is attracting interest in the area of deep-ultraviolet Light-emitting diodes and high-power, high-temperature electronic devices. However, the AlN grown on foreign substrate, for example sapphire, were in high strain state because of the lattice and thermal misfits. High-crystalline-quality epitaxial films of wurtzite AlN were grown on sapphire and 6H-SiC substrates. The lattice strain of the films was analyzed by high-resolution X-ray diffraction and the E2 (high)-phonon frequency which was observed by Raman scattering. Due to the dislocation that can relax the stress, the Raman shift move to high frequency as (10-12) XRC FWHM gets smaller. AlN/Sapphire show compressive stresses while AlN/6H-SiC shows tensile stress. Data analysis for wide ranges of lattice strains and phonon-peak shifts yielded a precise biaxial stress coefficient of this phonon mode, -4.04±0.3cm^<-1>/GPa.

Journal

  • IEICE technical report

    IEICE technical report 111(46), 11-14, 2011-05-12

    The Institute of Electronics, Information and Communication Engineers

References:  16

  • <no title>

    HIRAYAMA H.

    Phys. Stat. Sol. (a) 206, 1176, 2009

    Cited by (1)

  • <no title>

    TANIYASU Y.

    nature 441, 325, 2006

    Cited by (1)

  • <no title>

    TRODAHL H. J.

    Appl. Phys. Lett. 89, 061905, 2006

    Cited by (1)

  • <no title>

    LUGHI V.

    Appl. Phys. Lett. 89, 241911, 2006

    Cited by (1)

  • <no title>

    MIYAGAWA R.

    IWN2010, 2010

    Cited by (1)

  • <no title>

    TAKAGI Y.

    Phys. Status. Solidi. (c) 8, 470, 2011

    Cited by (1)

  • <no title>

    OKUMURA K.

    Phys. Status. Solidi. (c) 8, 467, 2011

    Cited by (1)

  • <no title>

    YIM W. M.

    J. Appl. Phys. 44, 292, 1973

    Cited by (1)

  • <no title>

    TANAKA M.

    Jpn. J. Appl. Phys. 36, L1062, 1997

    Cited by (1)

  • <no title>

    PROKOFYEVA T.

    Phys. Rev. B 63, 125313, 2001

    Cited by (1)

  • <no title>

    高橋清監修

    ワイドギャップ半導体 光 電子デバイス, 2006

    Cited by (1)

  • <no title>

    WAGNER J.-M.

    Appl. Phys. Lett. 77, 346, 2000

    Cited by (1)

  • <no title>

    KUBALL M.

    Appl. Phys. Lett. 78, 724, 2001

    Cited by (1)

  • <no title>

    WAGNER J. M.

    Appl. Phys. Lett. 77, 346, 2000

    Cited by (1)

  • <no title>

    SARUA A.

    Appl. Phys. Lett. 81, 1426, 2002

    Cited by (1)

  • <no title>

    DAVYDOV V. Y.

    J. Appl. Phys. 82, 5097, 1997

    DOI  Cited by (5)

Codes

  • NII Article ID (NAID)
    110008726012
  • NII NACSIS-CAT ID (NCID)
    AN10013254
  • Text Lang
    JPN
  • Article Type
    ART
  • ISSN
    09135685
  • NDL Article ID
    11116139
  • NDL Source Classification
    ZN33(科学技術--電気工学・電気機械工業--電子工学・電気通信)
  • NDL Call No.
    Z16-940
  • Data Source
    CJP  NDL  NII-ELS 
Page Top