真空紫外シュミットカメラ用MgF_2非球面補正板の開発  [in Japanese] Development of an MgF_2 aspheric corrector for a VUV Schmidt camera  [in Japanese]

Search this Article

Author(s)

Abstract

これまで地上からの大気光撮像やGPS を使った全電子数観測によって電離圏におけるプラズマバブルや伝搬性電離圏擾乱といった電子密度変動が観測されてきた.しかし,地上からは観測可能な範囲が限られているため,これらの現象のほんの一部分しか捉えることができない.一方,酸素原子の放射再結合で放射されるOI 135.6 nm 夜間大気光の放射強度は電離層F 層の電子密度の二乗にほぼ比例する.したがって静止衛星を利用してOI 135.6 nm大気光を撮像すれば,これらの電離圏現象の全体像を捉えることが可能である.中高緯度でのOI 135.6 nm 大気光の発光強度は10 R 程度であり,静止軌道から電離圏での水平距離100 km の空間分解能で撮像する場合,露出時間20 分で1000 カウント得るためには0.075 cts/s/R/pixel の感度が必要である.そこで真空紫外イメージャーの光学系として非常に明るいシュミット光学系を採用することとした.シュミット光学系で最も技術的に困難な要素は真空紫外光を透過するMgF_2などの結晶材料を基板とした非球面補正板の製作である.まず,MgF_2を補正板材料として用いたシュミット光学系を設計し,MgF_2の精密加工技術を確立するために,磁性流体研磨と高精度ダイレクト研削の二通りの方法で球面を試作した.干渉計を用いて面精度を評価した結果,両者ともに0.5λ PV(peak-to-valley) @ 135.6 nm 程度の面精度を達成できた.加工時間を考慮すると高精度ダイレクト研削が適することがわかった.次に,フライトモデルのシュミット補正板と同程度の最大傾斜,サグ量と60% の直径(= 60 mm)を有する小型MgF_2シュミット補正板を設計し,高精度ダイレクト研削を用いて試作した.その結果,面精度は0.53λ PV となった.高精度ダイレクト研削を用いて補正板を製作したと仮定して,シュミット光学系全体の性能を評価したところ,要求される空間解像度を十分に満たしていることが確かめられた.

Variations of electron density in the ionosphere accompanied by traveling ionospheric disturbances and plasma bubbles have been observed using ground-based airglow imaging and total electron content (TEC) measurements by a GPS network. However, these ground-based observations can detect only a portion of such wide-area phenomena, because the field-ofview from a ground station is limited. On the other hand, the intensity of the OI 135.6 nm night airglow emitted by radiative recombination processes is proportional to the square of the electron density in the F-region. Imaging the OI 135.6 nm emission using a geostationary satellite can reveal the entire distribution of these ionospheric phenomena. To detect variations in the weak OI 135.6 nm emission (~10 R) in middle and high latitudes with a spatial resolution of 100 km and a signal count of 1000 for an exposure time of 20 min, a sensitivity of 0.075 cts/s/R/pixel is required for a satellite-borne far ultraviolet (FUV) imager. For this reason, we adopted fast Schmidt optics for the FUV imager. The most technically challenging aspect of the design of such optics is the fabrication of an aspheric corrector using a vacuum ultraviolet transparent crystalline material such as MgF_2. In the present study, two different machining processes, magneto-rheological finishing and highaccuracy grinding, were compared for fine finishing the aspheric surfaces of the MgF_2 plates. The quality of the finished surfaces was evaluated by optical interferometry, and it was confirmed that a surface accuracy of 0.5λ PV (peak-to-valley) @ 135.6 nm was achieved with both processes. Since high-accuracy grinding was found to be more appropriate with regard to machining time, an aspheric surface with a 60% diameter (= 60 mm) and a maximum gradient and sag identical to those for the flight model corrector was manufactured using this process. The accuracy of the finished surface was evaluated to be 0.53λ PV. Simulations were then carried out to determine the overall optical performance of a corrector fabricated in this manner, and it was concluded that Schmidt optics using such a corrector can achieve the spatial resolution required for the FUV imager

Journal

  • JAXA research and development report

    JAXA research and development report JAXA-RR-11-004, 1-11, 2012-02

    Japan Aerospace Exploration Agency

Codes

  • NII Article ID (NAID)
    110008919266
  • NII NACSIS-CAT ID (NCID)
    AA1192675X
  • Text Lang
    JPN
  • ISSN
    13491113
  • Data Source
    NII-ELS 
Page Top