一般化空洞強調フィルタによる胸部CT像からの気管支領域抽出手法の開発 [in Japanese] A Method to Extract Airway Regions from Chest CT Images Using Generalized Cavity Enhancement Filter [in Japanese]
-
- 平野 靖 HIRANO Yasushi
- 山口大学大学院医学系研究科 Graduate School of Medicine, Yamaguchi University
-
- 徐 睿 XU Rui
- 山口大学大学院医学系研究科 Graduate School of Medicine, Yamaguchi University
-
- 橘 理恵 [他] TACHIBANA Rie
- 大島商船高等専門学校 Oshima National College of Maritime Technology
-
- 木戸 尚治 KIDO Shoji
- 山口大学大学院医学系研究科 Graduate School of Medicine, Yamaguchi University
Search this Article
Author(s)
-
- 平野 靖 HIRANO Yasushi
- 山口大学大学院医学系研究科 Graduate School of Medicine, Yamaguchi University
-
- 徐 睿 XU Rui
- 山口大学大学院医学系研究科 Graduate School of Medicine, Yamaguchi University
-
- 橘 理恵 [他] TACHIBANA Rie
- 大島商船高等専門学校 Oshima National College of Maritime Technology
-
- 木戸 尚治 KIDO Shoji
- 山口大学大学院医学系研究科 Graduate School of Medicine, Yamaguchi University
Abstract
胸部CT像から抽出される気管支領域は,肺野内の構造解析や仮想化気管支内視鏡,あるいは呼吸機能シミュレーションなどに利用される.このような用途で用いられる場合には,気管支枝の見落しや拾いすぎが少なく,更に末梢部の細い気管支も正確に抽出されることが望ましい.また,気管支の形状は個人差が大きく,分岐パターンもいくつかある.更に肺がんの外科的な治療で一般的に行われる肺葉切除術によって術前の形状や分岐パターンから大きく変化する.これまで数多くの気管支抽出手法が提案されているが,それらは見落しや拾いすぎが多いものや,肺葉切除術後の気管支の変形を考慮しないものなど,抽出精度や適用可能性が十分でないものがほとんどであった.これまでに,筆者らは,空洞強調フィルタを提案し,これを胸部CT像に適用することによって,選択的に気管支内腔領域を強調し,高精度な気管支領域を抽出する手法を開発した.本論文では,空洞強調フィルタを改良した一般化空洞強調フィルタを用いることによって任意の種類・次元数の特徴ベクトルによって構成される空洞構造を選択的に強調できる手法を提案する.更に一般化空洞強調フィルタを用いることで,高精度に気管支領域を抽出する手法の開発を行った.これにより,従来法と比べて抽出率が10%程度向上した.
Journal
-
- The IEICE transactions on information and systems (Japanese edetion)
-
The IEICE transactions on information and systems (Japanese edetion) 96(4), 824-833, 2013-04-01
The Institute of Electronics, Information and Communication Engineers
References: 19
-
1
- Automatic recognition of lung lobes and fissures from multi slice CT images
-
ZHOU X.
Proc. SPIE on Medical Imaging, 2004 5370, 1629-1633, 2004
Cited by (1)
-
2
- Fully automated segmentation of pulmonary lobes with severe diffuse opacities on three-dimensional thoracic CT images
-
KIDO S.
Proc. European Congress of Radiology (ECR2011), 2011
Cited by (1)
-
3
- Pulmonary artery and vein classification using spatial arrangement features from X-ray CT images
-
MEKADA Y.
Proc. 7th Asia-pacific Conference on Control and Measurement, 2006, 232-235, 2006
Cited by (1)
-
4
- Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance
-
MORI K.
Proc. Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2009, Part II, 707-714, 2009
Cited by (1)
-
5
- A numerical study of gas transport in human lung models
-
LIN C. L.
Proc. SPIE on Medical Imaging, 2005 5746, 92-100, 2005
Cited by (1)
-
6
- Numerical simulation of respiratory function for pulmonary lobectomy
-
HIRANO Y.
Proc. International Forum on Medical Imaging in Asia (IFMIA) 2011, 111-112, 2011
Cited by (1)
-
7
- ManiSMC : A new method using manifold modeling and sequential Monte Carlo sampler for boosting navigated bronchoscopy
-
LUO X.
Proc. MICCAI 2011, 248-255, 2011
Cited by (1)
-
8
- Application and Limitations of Virtual Branchoscopic Navigation
-
ASANO F.
Flexible Bronchoscopy, 2012
Cited by (1)
-
9
- Automated extraction and visualization of bronchus from 3D CT images of lung
-
MORI K.
Proc. 1st CVRMed'95, 542-548, 1995
Cited by (1)
-
10
- A method for extraction of bronchus regions from 3D chest X-ray CT images by analyzing structural features of the bronchus
-
KITASAKA T.
Forma 17, 321-338, 2002
Cited by (1)
-
11
- Airway tree segmentation using adaptive regions of interest
-
TSCHIRREN J.
Proc. SPIE on Medical Imaging, 2004 5369, 117-124, 2004
Cited by (1)
-
12
- Robust system for human airway-tree segmentation
-
CRAHA M. W.
Proc. SPIE on Medical Imaging, 2008 6914, "69141J-1"-"69141J-18", 2008
Cited by (1)
-
13
- Adaptive branch tracing and image sharpening for airway tree extraction in 3-D chest CT
-
FEUERSTEIN M.
Proc. Second International Workshop on Pulmonary Image Analysis, 2009, 273-284, 2009
Cited by (1)
-
14
- Voxel classification based airway tree segmentation
-
LO P.
Proc. SPIE on Medical Imaging, 2008 6914, 69141K.1-69141K.12, 2008
Cited by (1)
-
15
- Bronchial region extraction from 3D chest CT image by voxel classification based on local intensity structure
-
KITASAKA T.
Proc. Third International Workshop on Pulmonary Image Analysis, 2010, 21-29, 2010
Cited by (1)
-
16
- 機械学習と最少全域木を用いた高精度な気管支領域の抽出
-
井上努
信学技報, MI2011-116, 2012
Cited by (1)
-
17
- Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images
-
SATO Y.
Medical Image Analysis 2, 143-168, 1998
Cited by (1)
-
18
- Cavity Enhancement Filter and Its Application in a Method for Extracting Bronchial Regions from Chest CT Images [in Japanese]
-
HIRANO Yasushi , XU Rui , TACHIBANA Rie , KIDO Shoji
Medical Imaging Technology 30(1), 33-42, 2012
J-STAGE Ichushi Web Cited by (1)
-
19
- A Region Growing Method Using Hyper Surface Curvature and Its Application to Extraction of Blood Vessel Region from Chest X-ray CT Images [in Japanese]
-
Hirano Yasushi , Kunimitsu Kazuhiro , Hasegawa Jun-ichi , Toriwaki Jun-ichirou
Journal of Computer Aided Diagnosis of Medical Images 7(3), 19-28, 2003
J-STAGE Cited by (1)