UvrA and UvrB enhance mutations induced by oxidized deoxyribonucleotides

HANDLE 2 Citations Open Access

Abstract

Oxidatively damaged DNA precursors (deoxyribonucleotides) are formed by reactive oxygen species. After the damaged DNA precursors are incorporated into DNA, they might be removed by DNA repair enzymes. in this study, to examine whether a nucleotide excision repair enzyme, Escherichia coli UvrABC, could suppress the mutations induced by oxidized deoxyribonucleotides in vivo, oxidized DNA precursors, 8-hydroxy-2'-deoxyguanosine 5'-triphosphate and 2-hydroxy-2'-deoxyadenosine 5'-triphosphate, were introduced into uvrA, uvrB, and uvrC E. coli strains, and mutations in the chromosomal rpoB gene were analyzed. Unexpectedly, these oxidized DNA precursors induced mutations only slightly in the uvrA and uvrB strains. In contrast, effect of the uvrC-deficiency was not observed. Next, mutT, mutT/uvrA, and mutT/uvrB E. coli strains were treated with H_{2}O_{2}, and the rpoB mutant frequencies were calculated. The frequency of the H_{2}O_{2}-induced mutations was increased in all of the strains tested; however, the increase was three- to four-fold lower in the mutT/uvrA and mutT/uvrB strains than in the mutT strain. Thus, UvrA and UvrB are involved in the enhancement, but not in the suppression, of the mutations induced by these oxidized deoxyribonucleotides. These results suggest a novel role for UvrA and UvrB in the processing of oxidative damage.

Journal

  • DNA Repair

    DNA Repair 6 (12), 1786-1793, 2007-12-01

    Elsevier

Citations (2)*help

See more

Related Projects

See more

Details 詳細情報について

  • CRID
    1050564288946402304
  • NII Article ID
    120000950256
  • HANDLE
    2115/32294
  • ISSN
    15687864
  • Text Lang
    en
  • Article Type
    journal article
  • Data Source
    • IRDB
    • CiNii Articles
    • KAKEN

Report a problem

Back to top