Superconductor-Based Quantum-Dot Light-Emitting Diodes: Role of Cooper Pairs in Generating Entangled Photon Pairs

この論文をさがす

抄録

The realization of solid-state photon sources that are capable of on-demand generation of an entangled single-photon pair at a time is highly desired for quantum information processing and communication. A new method of generating an entangled single-photon pair at a time is proposed employing Cooper-pair-related radiative recombination in a quantum dot (QD). Cooper pairs are bosons and the control of their number states is difficult. Pauli's exclusion principle on quasiparticles in a discrete state of a QD regulates the number state of the generated photon pairs in this scheme. The fundamental heterostructures for constructing superconductor-based quantum-dot light-emitting diodes (SQ-LEDs) and the fundamental operation conditions of SQ-LED will be discussed. The experimental studies on Cooper-pair injection into the related semiconductor structures will be also discussed.

収録刊行物

被引用文献 (9)*注記

もっと見る

参考文献 (35)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ