Expression of hormone genes and osmoregulation in homing chum salmon: A minireview.

HANDLE Open Access

Abstract

Pacific salmon migrate from ocean through the natal river for spawning. Information on expression of genes encoding osmoregulatory hormones and migratory behavior is important for understanding of molecular events that underlie osmoregulation of homing salmon. In the present article, regulation of gene expression for osmoregulatory hormones in pre-spawning salmon was briefly reviewed with special reference to neurohypophysial hormone, vasotocin (VT), and pituitary hormones, growth hormone (GH) and prolactin (PRL). Thereafter, we introduced recent data on migratory behavior from SW to FW environment. In pre-spawning chum salmon, the hypothalamic VT mRNA levels increased in the males, while decreased in the females with loss of salinity tolerance when they were kept in SW. The amounts of GH mRNA in the pituitary decreased during ocean migration prior to entrance into FW. Hypo-osmotic stimulation by SW-to-FW transfer did not significantly affect the amount of PRL mRNA, but it was elevated in both SW and FW environments along with progress in final maturation. Behaviorally, homing chum salmon continued vertical movement between SW and FW layers in the mouth of the natal river for about 12 h prior to upstream migration. Pre-spawning chum salmon in an aquarium, which allowed fish free access to SW and FW, showed that individuals with the lower plasma testosterone (T) and higher estradiol-17β (E2) levels spent longer time in FW when compared with the SW fish. Taken together, neuroendocrine mechanisms that underlie salt and water homeostasis and migratory behavior from SW to FW may be under the control of the hypothalamus-pituitary-gonadal axis in pre-spawning salmon.

Journal

Details 詳細情報について

  • CRID
    1050001338992797312
  • NII Article ID
    120000973294
  • ISSN
    10956840
    00166480
  • HANDLE
    2115/29631
  • Text Lang
    en
  • Article Type
    journal article
  • Data Source
    • IRDB
    • CiNii Articles

Report a problem

Back to top