Algebraic instability caused by acoustic modes in supersonic shear flows

この論文にアクセスする

この論文をさがす

抄録

Perturbations in a shear flow exhibit rather complex behavior - waves may grow algebraically even when the spectrum of disturbances is entirely neutral (no exponential instability). A shear flow brings about non-selfadjoint property, invalidating the standard notion of dispersion relations, and it also produces a continuous spectrum that is a characteristic entity in an infinite-dimension phase space. This paper solves an initial value problem using the Laplace transform and presents a new-type of algebraic instability that is caused by resonant interaction between acoustic modes (point spectrum) and vortical continuum mode (continuous spectrum). Such a resonance is possible when variation of velocity shear is comparable to sound speed.

収録刊行物

  • JMI

    JMI 1, 123-130, 2009

    Faculty of Mathematics, Kyushu University

各種コード

  • NII論文ID(NAID)
    120001633481
  • NII書誌ID(NCID)
    AA12444018
  • 本文言語コード
    ENG
  • 資料種別
    Journal Article
  • 雑誌種別
    大学紀要
  • ISSN
    18844774
  • NDL 記事登録ID
    10948678
  • NDL 雑誌分類
    ZM31(科学技術--数学)
  • NDL 請求記号
    Z63-D421
  • データ提供元
    NDL  IR 
ページトップへ