A new process for catalyst-free production of biodiesel using supercritical methyl acetate

Bibliographic Information

Other Title
  • New process for catalyst-free biodiesel production with supercritical methyl acetate

Abstract

Production of glycerol is unavoidable in the conventional processes for biodiesel fuel (BDF) production. In this research, therefore, we investigated conversion of rapeseed oil to fatty acid methyl esters (FAME) and triacetin (TA) by processing of supercritical methyl acetate. As a result, it was discovered that the trans-esterification reaction of triglycerides with methyl acetate can proceed without catalyst under supercritical conditions, generating FAME and triacetin. In order to study the effect of the triacetin addition to FAME, its effect was investigated on various fuel characteristics. It was, consequently, discovered that there were no adverse effects on the main fuel characteristics when the molar ratio of methyl oleate to triacetin was 3:1, corresponding to the theoretically derived mole ratio from the trans-esterification reaction of rapeseed oil with methyl acetate. Moreover, the addition of triacetin to methyl oleate improved the pour point and triacetin has high oxidation stability. Therefore, by defining BDF as a mixture of methyl oleate with triacetin, we can obtain an improved yield of 105% of BDF by the supercritical methyl acetate, in excess of the yield of the conventional process.

Journal

  • Fuel

    Fuel 88 (7), 1307-1313, 2009-07

    Elsevier

Citations (5)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top