Inter-eruptive volcanism at Usu volcano : Micro-earthquakes and dome subsidence

HANDLE オープンアクセス

抄録

Post-eruptive crustal activity after the 2000 eruption of Usu volcano was investigated by seismic and geodetic field observations. Remarkable features of the magmatic eruptions that occur almost every 30 years include lava dome formation and strong precursory earthquakes. On the other hand, rapid dome subsidence was observed by electronic distance meter (EDM) measurement after the 1977-1982 summit eruption. Since the 2000 eruption, seismic activity at a shallow part under the summit crater has remained at a high level relative to that after the 1977-1982 eruption, although eruption occurred at the western foot of the volcano during the 2000 eruption. To reveal the shallow crustal activity in the inter-eruptive period around the summit area, seismicity and crustal deformation have been investigated since 2006. Dense temporary seismic observations and hypocenter relocation analysis using a three-dimensional velocity structure model revealed that the focal area is localized along the U-shaped fault that developed in the dome-forming stage of the 1977-1982 eruption. Three major focal clusters are distributed on the southwestern side of Usu-Shinzan cryptodome, which was built up during the 1977-1982 eruption. For the seven major events with magnitudes larger than 1, the focal mechanism was a large dip-slip component, which suggests the subsidence of Usu-Shinzan cryptodome. Interferomatetric satellite aperture radar (InSAR) image analysis and repeated GPS measurements revealed subsidence of the summit dome, which is almost centered at the Usu-Shinzan cryptodome. The area of rapid deformation is restricted to a small area around the summit crater. The estimated rate of dome subsidence relative to the crater floor is about 3 cm/year. These results strongly suggest that subsidence of Usu-Shinzan is associated with the small earthquakes along the U-shaped fault that surrounds the cryptodome. According to prior seismic and geodetic studies, it is thought that most of the magma rising under the summit crater during the 2000 eruption stopped around a depth of 2 km below sea level, which is sufficiently deep relative to the focal area of the present seismicity. A part of magma intruded under the western foot and contributed to the 2000 eruption. We conclude that the 2000 eruption scarcely affected the shallow crustal activity under the summit crater, and that Usu-Shinzan cryptodome is continuing to subside just as it was before the 2000 eruption. The shallow volcanic earthquakes that began increasing from 1995 are closely related to the successive subsidence of the summit domes. Temporal change in fumarole temperature suggests a relationship between the shallow earthquakes and cooling of the magma that intruded under Usu-Shinzan during the 1977-1982 eruption.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1050845763932418304
  • NII論文ID
    120001720437
  • HANDLE
    2115/40065
  • ISSN
    03770273
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB
    • CiNii Articles

問題の指摘

ページトップへ