NOTE ON HILBERT-SPEISER NUMBER FIELDS AT A PRIME $p$ Note on Hilbert-Speiser number fields at a prime p

Access this Article

Search this Article

Abstract

Let $p$ be a prime number. A number field $F$ satisfies the Hilbert-Speiser condition $(H_{p})$ when any tame cyclic extension $N/F$ of degree $p$ has a normal integral basis. We show that $F$ satisfies $(H_{p})$ only when $F¥cap Q(¥zeta_{p})=Q$ under some assumption on $p$ .

Journal

  • Yokohama Math. J.

    Yokohama Math. J. 54(1), 45-53, 2007

    Yokohama City University and Yokohama National University

Cited by:  1

Codes

  • NII Article ID (NAID)
    120001740842
  • NII NACSIS-CAT ID (NCID)
    AA0089285X
  • Text Lang
    ENG
  • Article Type
    Journal Article
  • ISSN
    0044-0523
  • Data Source
    CJPref  IR 
Page Top